Last active
July 10, 2018 17:22
-
-
Save sadatnfs/586e03d00d15d77ebe0fd89e76a8c272 to your computer and use it in GitHub Desktop.
cholmod_super_numeric file with higher malloc thresh
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* ========================================================================== */ | |
/* === Supernodal/cholmod_super_numeric ===================================== */ | |
/* ========================================================================== */ | |
/* ----------------------------------------------------------------------------- | |
* CHOLMOD/Supernodal Module. Copyright (C) 2005-2006, Timothy A. Davis | |
* The CHOLMOD/Supernodal Module is licensed under Version 2.0 of the GNU | |
* General Public License. See gpl.txt for a text of the license. | |
* CHOLMOD is also available under other licenses; contact authors for details. | |
* http://www.suitesparse.com | |
* -------------------------------------------------------------------------- */ | |
/* Computes the Cholesky factorization of A+beta*I or A*F+beta*I. Only the | |
* the lower triangular part of A+beta*I or A*F+beta*I is accessed. The | |
* matrices A and F must already be permuted according to the fill-reduction | |
* permutation L->Perm. cholmod_factorize is an "easy" wrapper for this code | |
* which applies that permutation. beta is real. | |
* | |
* Symmetric case: A is a symmetric (lower) matrix. F is not accessed. | |
* With a fill-reducing permutation, A(p,p) should be passed instead, where is | |
* p is L->Perm. | |
* | |
* Unsymmetric case: A is unsymmetric, and F must be present. Normally, F=A'. | |
* With a fill-reducing permutation, A(p,f) and A(p,f)' should be passed as A | |
* and F, respectively, where f is a list of the subset of the columns of A. | |
* | |
* The input factorization L must be supernodal (L->is_super is TRUE). It can | |
* either be symbolic or numeric. In the first case, L has been analyzed by | |
* cholmod_analyze or cholmod_super_symbolic, but the matrix has not yet been | |
* numerically factorized. The numerical values are allocated here and the | |
* factorization is computed. In the second case, a prior matrix has been | |
* analyzed and numerically factorized, and a new matrix is being factorized. | |
* The numerical values of L are replaced with the new numerical factorization. | |
* | |
* L->is_ll is ignored, and set to TRUE. This routine always computes an LL' | |
* factorization. Supernodal LDL' factorization is not (yet) supported. | |
* FUTURE WORK: perform a supernodal LDL' factorization if L->is_ll is FALSE. | |
* | |
* Uses BLAS routines dsyrk, dgemm, dtrsm, and the LAPACK routine dpotrf. | |
* The supernodal solver uses BLAS routines dtrsv, dgemv, dtrsm, and dgemm. | |
* | |
* If the matrix is not positive definite the routine returns TRUE, but sets | |
* Common->status to CHOLMOD_NOT_POSDEF and L->minor is set to the column at | |
* which the failure occurred. The supernode containing the non-positive | |
* diagonal entry is set to zero (this includes columns to the left of L->minor | |
* in the same supernode), as are all subsequent supernodes. | |
* | |
* workspace: Flag (nrow), Head (nrow+1), Iwork (2*nrow + 4*nsuper). | |
* Allocates temporary space of size L->maxcsize * sizeof(double) | |
* (twice that for the complex/zomplex case). | |
* | |
* If L is supernodal symbolic on input, it is converted to a supernodal numeric | |
* factor on output, with an xtype of real if A is real, or complex if A is | |
* complex or zomplex. If L is supernodal numeric on input, its xtype must | |
* match A (except that L can be complex and A zomplex). The xtype of A and F | |
* must match. | |
*/ | |
#ifndef NSUPERNODAL | |
#include "cholmod_internal.h" | |
#include "cholmod_supernodal.h" | |
/* ========================================================================== */ | |
/* === TEMPLATE codes for GPU and regular numeric factorization ============= */ | |
/* ========================================================================== */ | |
#ifdef GPU_BLAS | |
#define REAL | |
#include "t_cholmod_gpu.c" | |
#define COMPLEX | |
#include "t_cholmod_gpu.c" | |
#define ZOMPLEX | |
#include "t_cholmod_gpu.c" | |
#endif | |
#define REAL | |
#include "t_cholmod_super_numeric.c" | |
#define COMPLEX | |
#include "t_cholmod_super_numeric.c" | |
#define ZOMPLEX | |
#include "t_cholmod_super_numeric.c" | |
/* ========================================================================== */ | |
/* === cholmod_super_numeric ================================================ */ | |
/* ========================================================================== */ | |
/* Returns TRUE if successful, or if the matrix is not positive definite. | |
* Returns FALSE if out of memory, inputs are invalid, or other fatal error | |
* occurs. | |
*/ | |
int CHOLMOD(super_numeric) | |
( | |
/* ---- input ---- */ | |
cholmod_sparse *A, /* matrix to factorize */ | |
cholmod_sparse *F, /* F = A' or A(:,f)' */ | |
double beta [2], /* beta*I is added to diagonal of matrix to factorize */ | |
/* ---- in/out --- */ | |
cholmod_factor *L, /* factorization */ | |
/* --------------- */ | |
cholmod_common *Common | |
) | |
{ | |
cholmod_dense *C ; | |
Int *Super, *Map, *SuperMap ; | |
size_t maxcsize ; | |
Int nsuper, n, i, k, s, stype, nrow ; | |
int ok = TRUE, symbolic ; | |
size_t t, w ; | |
/* ---------------------------------------------------------------------- */ | |
/* check inputs */ | |
/* ---------------------------------------------------------------------- */ | |
RETURN_IF_NULL_COMMON (FALSE) ; | |
RETURN_IF_NULL (L, FALSE) ; | |
RETURN_IF_NULL (A, FALSE) ; | |
RETURN_IF_XTYPE_INVALID (A, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; | |
RETURN_IF_XTYPE_INVALID (L, CHOLMOD_PATTERN, CHOLMOD_COMPLEX, FALSE) ; | |
stype = A->stype ; | |
if (stype < 0) | |
{ | |
if (A->nrow != A->ncol || A->nrow != L->n) | |
{ | |
ERROR (CHOLMOD_INVALID, "invalid dimensions") ; | |
return (FALSE) ; | |
} | |
} | |
else if (stype == 0) | |
{ | |
if (A->nrow != L->n) | |
{ | |
ERROR (CHOLMOD_INVALID, "invalid dimensions") ; | |
return (FALSE) ; | |
} | |
RETURN_IF_NULL (F, FALSE) ; | |
RETURN_IF_XTYPE_INVALID (F, CHOLMOD_REAL, CHOLMOD_ZOMPLEX, FALSE) ; | |
if (A->nrow != F->ncol || A->ncol != F->nrow || F->stype != 0) | |
{ | |
ERROR (CHOLMOD_INVALID, "F invalid") ; | |
return (FALSE) ; | |
} | |
if (A->xtype != F->xtype) | |
{ | |
ERROR (CHOLMOD_INVALID, "A and F must have same xtype") ; | |
return (FALSE) ; | |
} | |
} | |
else | |
{ | |
/* symmetric upper case not suppored */ | |
ERROR (CHOLMOD_INVALID, "symmetric upper case not supported") ; | |
return (FALSE) ; | |
} | |
if (!(L->is_super)) | |
{ | |
ERROR (CHOLMOD_INVALID, "L not supernodal") ; | |
return (FALSE) ; | |
} | |
if (L->xtype != CHOLMOD_PATTERN) | |
{ | |
if (! ((A->xtype == CHOLMOD_REAL && L->xtype == CHOLMOD_REAL) | |
|| (A->xtype == CHOLMOD_COMPLEX && L->xtype == CHOLMOD_COMPLEX) | |
|| (A->xtype == CHOLMOD_ZOMPLEX && L->xtype == CHOLMOD_COMPLEX))) | |
{ | |
ERROR (CHOLMOD_INVALID, "complex type mismatch") ; | |
return (FALSE) ; | |
} | |
} | |
Common->status = CHOLMOD_OK ; | |
/* ---------------------------------------------------------------------- */ | |
/* allocate workspace in Common */ | |
/* ---------------------------------------------------------------------- */ | |
nsuper = L->nsuper ; | |
maxcsize = L->maxcsize ; | |
nrow = A->nrow ; | |
n = nrow ; | |
PRINT1 (("nsuper "ID" maxcsize %g\n", nsuper, (double) maxcsize)) ; | |
ASSERT (nsuper >= 0 && maxcsize > 0) ; | |
/* w = 4*n + 6*nsuper */ | |
w = CHOLMOD(mult_size_t) (n, 10, &ok) ; | |
t = CHOLMOD(mult_size_t) (nsuper, 12, &ok) ; | |
w = CHOLMOD(add_size_t) (w, t, &ok) ; | |
if (!ok) | |
{ | |
ERROR (CHOLMOD_TOO_LARGE, "problem too large") ; | |
return (FALSE) ; | |
} | |
CHOLMOD(allocate_work) (n, w, 0, Common) ; | |
if (Common->status < CHOLMOD_OK) | |
{ | |
return (FALSE) ; | |
} | |
ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; | |
/* ---------------------------------------------------------------------- */ | |
/* get the current factor L and allocate numerical part, if needed */ | |
/* ---------------------------------------------------------------------- */ | |
Super = L->super ; | |
symbolic = (L->xtype == CHOLMOD_PATTERN) ; | |
if (symbolic) | |
{ | |
/* convert to supernodal numeric by allocating L->x */ | |
CHOLMOD(change_factor) ( | |
(A->xtype == CHOLMOD_REAL) ? CHOLMOD_REAL : CHOLMOD_COMPLEX, | |
TRUE, TRUE, TRUE, TRUE, L, Common) ; | |
if (Common->status < CHOLMOD_OK) | |
{ | |
/* the factor L remains in symbolic supernodal form */ | |
return (FALSE) ; | |
} | |
} | |
ASSERT (L->dtype == DTYPE) ; | |
ASSERT (L->xtype == CHOLMOD_REAL || L->xtype == CHOLMOD_COMPLEX) ; | |
/* supernodal LDL' is not supported */ | |
L->is_ll = TRUE ; | |
/* ---------------------------------------------------------------------- */ | |
/* get more workspace */ | |
/* ---------------------------------------------------------------------- */ | |
C = CHOLMOD(allocate_dense) (maxcsize, 1, maxcsize, L->xtype, Common) ; | |
if (Common->status < CHOLMOD_OK) | |
{ | |
int status = Common->status ; | |
if (symbolic) | |
{ | |
/* Change L back to symbolic, since the numeric values are not | |
* initialized. This cannot fail. */ | |
CHOLMOD(change_factor) (CHOLMOD_PATTERN, TRUE, TRUE, TRUE, TRUE, | |
L, Common) ; | |
} | |
/* the factor L is now back to the form it had on input */ | |
Common->status = status ; | |
return (FALSE) ; | |
} | |
/* ---------------------------------------------------------------------- */ | |
/* get workspace */ | |
/* ---------------------------------------------------------------------- */ | |
SuperMap = Common->Iwork ; /* size n (i/i/l) */ | |
Map = Common->Flag ; /* size n, use Flag as workspace for Map array */ | |
for (i = 0 ; i < n ; i++) | |
{ | |
Map [i] = EMPTY ; | |
} | |
/* ---------------------------------------------------------------------- */ | |
/* find the mapping of nodes to relaxed supernodes */ | |
/* ---------------------------------------------------------------------- */ | |
/* SuperMap [k] = s if column k is contained in supernode s */ | |
for (s = 0 ; s < nsuper ; s++) | |
{ | |
PRINT1 (("Super ["ID"] "ID" ncols "ID"\n", | |
s, Super[s], Super[s+1]-Super[s])); | |
for (k = Super [s] ; k < Super [s+1] ; k++) | |
{ | |
SuperMap [k] = s ; | |
PRINT2 (("relaxed SuperMap ["ID"] = "ID"\n", k, SuperMap [k])) ; | |
} | |
} | |
/* ---------------------------------------------------------------------- */ | |
/* supernodal numerical factorization, using template routine */ | |
/* ---------------------------------------------------------------------- */ | |
switch (A->xtype) | |
{ | |
case CHOLMOD_REAL: | |
ok = r_cholmod_super_numeric (A, F, beta, L, C, Common) ; | |
break ; | |
case CHOLMOD_COMPLEX: | |
ok = c_cholmod_super_numeric (A, F, beta, L, C, Common) ; | |
break ; | |
case CHOLMOD_ZOMPLEX: | |
/* This operates on complex L, not zomplex */ | |
ok = z_cholmod_super_numeric (A, F, beta, L, C, Common) ; | |
break ; | |
} | |
/* ---------------------------------------------------------------------- */ | |
/* clear Common workspace, free temp workspace C, and return */ | |
/* ---------------------------------------------------------------------- */ | |
/* Flag array was used as workspace, clear it */ | |
Common->mark = EMPTY ; | |
/* CHOLMOD(clear_flag) (Common) ; */ | |
CHOLMOD_CLEAR_FLAG (Common) ; | |
ASSERT (CHOLMOD(dump_work) (TRUE, TRUE, 0, Common)) ; | |
CHOLMOD(free_dense) (&C, Common) ; | |
return (ok) ; | |
} | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment