Skip to content

Instantly share code, notes, and snippets.

@sadimanna
Last active April 12, 2020 12:24
Show Gist options
  • Save sadimanna/1aced7967b13f9fbbec1a52f67e48fea to your computer and use it in GitHub Desktop.
Save sadimanna/1aced7967b13f9fbbec1a52f67e48fea to your computer and use it in GitHub Desktop.
class Plotter(botCallback):
def __init__(self,access_token):
super().__init__(access_token)
def on_train_begin(self,logs=None):
self.batch = 0
self.epoch = []
self.train_loss = []
self.val_loss = []
self.train_acc = []
self.val_acc = []
self.fig = plt.figure(figsize=(200,100))
self.logs = []
def on_epoch_end(self, epoch, logs=None):
self.logs.append(logs)
self.epoch.append(epoch)
self.train_loss.append(logs['loss'])
self.val_loss.append(logs['val_loss'])
self.train_acc.append(logs['accuracy'])
self.val_acc.append(logs['val_accuracy'])
f,(ax1,ax2) = plt.subplots(1,2,sharex=True)
clear_output(wait=True)
ax1.plot(self.epoch, self.train_loss, label='Training Loss')
ax1.plot(self.epoch, self.val_loss, label='Validation Loss')
ax1.legend()
ax2.plot(self.epoch, self.train_acc, label='Training Accuracy')
ax2.plot(self.epoch, self.val_acc, label='Validation Accuracy')
ax2.legend()
plt.savefig('Accuracy and Loss plot.jpg')
self.send_photo('/content/Accuracy and Loss plot.jpg')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment