Skip to content

Instantly share code, notes, and snippets.

@sadimanna
Last active August 25, 2022 09:41
Show Gist options
  • Save sadimanna/7d91e66d296214c6ff27f8e3c6010d87 to your computer and use it in GitHub Desktop.
Save sadimanna/7d91e66d296214c6ff27f8e3c6010d87 to your computer and use it in GitHub Desktop.
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 32, 32] 9,408
BatchNorm2d-2 [-1, 64, 32, 32] 128
ReLU-3 [-1, 64, 32, 32] 0
MaxPool2d-4 [-1, 64, 16, 16] 0
.
.
Linear-68 [-1, 1000] 513,000
ResNet-69 [-1, 1000] 0
Conv2d-70 [-1, 64, 32, 32] 9,408
BatchNorm2d-71 [-1, 64, 32, 32] 128
ReLU-72 [-1, 64, 32, 32] 0
MaxPool2d-73 [-1, 64, 16, 16] 0
.
.
AdaptiveAvgPool2d-136 [-1, 512, 1, 1] 0
Linear-137 [-1, 1000] 513,000
ResNet-138 [-1, 1000] 0
Conv2d-139 [-1, 64, 32, 32] 9,408
BatchNorm2d-140 [-1, 64, 32, 32] 128
ReLU-141 [-1, 64, 32, 32] 0
MaxPool2d-142 [-1, 64, 16, 16] 0
.
.
AdaptiveAvgPool2d-205 [-1, 512, 1, 1] 0
Linear-206 [-1, 1000] 513,000
ResNet-207 [-1, 1000] 0
================================================================
Total params: 35,068,536
Trainable params: 35,068,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 13011038208.00
Forward/backward pass size (MB): 188.40
Params size (MB): 133.78
Estimated Total Size (MB): 13011038530.18
----------------------------------------------------------------
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment