Created
June 30, 2021 10:58
-
-
Save sadimanna/9aa11e892398a3cba82669afd1eb67ab to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def save_model(model, optimizer, scheduler, current_epoch, name): | |
out = os.path.join('/content/saved_models/',name.format(current_epoch)) | |
torch.save({'model_state_dict': model.state_dict(), | |
'optimizer_state_dict': optimizer.state_dict(), | |
'scheduler_state_dict':scheduler.state_dict()}, out) | |
def plot_features(model, num_classes, num_feats, batch_size): | |
preds = np.array([]).reshape((0,1)) | |
gt = np.array([]).reshape((0,1)) | |
feats = np.array([]).reshape((0,num_feats)) | |
model.eval() | |
with torch.no_grad(): | |
for x1,x2 in vdl: | |
x1 = x1.squeeze().to(device = 'cuda:0', dtype = torch.float) | |
out = model(x1) | |
out = out.cpu().data.numpy()#.reshape((1,-1)) | |
feats = np.append(feats,out,axis = 0) | |
tsne = TSNE(n_components = 2, perplexity = 50) | |
x_feats = tsne.fit_transform(feats) | |
num_samples = int(batch_size*(valimages.shape[0]//batch_size))#(len(val_df) | |
for i in range(num_classes): | |
plt.scatter(x_feats[vallabels[:num_samples]==i,1],x_feats[vallabels[:num_samples]==i,0]) | |
plt.legend([str(i) for i in range(num_classes)]) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment