Skip to content

Instantly share code, notes, and snippets.

@sadimanna
Last active June 30, 2021 12:22
Show Gist options
  • Save sadimanna/d5a827b94e4dc28ad7b1b5473e1ab642 to your computer and use it in GitHub Desktop.
Save sadimanna/d5a827b94e4dc28ad7b1b5473e1ab642 to your computer and use it in GitHub Desktop.
tdg = DSDataGen('test', testimages, testlabels, num_classes=10)
tdl = DataLoader(tdg, batch_size = 32, drop_last = True)
dsmodel.eval()
loss_sublist = np.array([])
acc_sublist = np.array([])
with torch.no_grad():
for x,y in vdl:
x = x.squeeze().to(device = 'cuda:0', dtype = torch.float)
y = y.to(device = 'cuda:0')
z = dsmodel(x)
val_loss = loss_fn(z,y)
preds = torch.exp(z.cpu().data)/torch.sum(torch.exp(z.cpu().data))
loss_sublist = np.append(loss_sublist, val_loss.cpu().data)
acc_sublist = np.append(acc_sublist,np.array(np.argmax(preds,axis=1)==y.cpu().data.view(-1)).astype('int'),axis=0)
print('TEST BINARY CROSSENTROPY LOSS: ',np.mean(loss_sublist))
print('TEST BINARY ACCURACY: ',np.mean(acc_sublist))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment