Last active
June 30, 2021 11:22
-
-
Save sadimanna/dcc3aa3ebebacbc39def6839e6bc2db6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
for epoch in range(20): | |
stime = time.time() | |
print("=============== Epoch : %3d ==============="%(epoch+1)) | |
loss_sublist = np.array([]) | |
acc_sublist = np.array([]) | |
#iter_num = 0 | |
dsmodel.train() | |
dsoptimizer.zero_grad() | |
for x,y in dl: | |
x = x.squeeze().to(device = 'cuda:0', dtype = torch.float) | |
y = y.to(device = 'cuda:0') | |
z = dsmodel(x) | |
dsoptimizer.zero_grad() | |
tr_loss = loss_fn(z,y) | |
tr_loss.backward() | |
preds = torch.exp(z.cpu().data)/torch.sum(torch.exp(z.cpu().data)) | |
dsoptimizer.step() | |
loss_sublist = np.append(loss_sublist, tr_loss.cpu().data) | |
acc_sublist = np.append(acc_sublist,np.array(np.argmax(preds,axis=1)==y.cpu().data.view(-1)).astype('int'),axis=0) | |
print('ESTIMATING TRAINING METRICS.............') | |
print('TRAINING BINARY CROSSENTROPY LOSS: ',np.mean(loss_sublist)) | |
print('TRAINING BINARY ACCURACY: ',np.mean(acc_sublist)) | |
tr_ep_loss.append(np.mean(loss_sublist)) | |
tr_ep_acc.append(np.mean(acc_sublist)) | |
print('ESTIMATING VALIDATION METRICS.............') | |
dsmodel.eval() | |
loss_sublist = np.array([]) | |
acc_sublist = np.array([]) | |
with torch.no_grad(): | |
for x,y in vdl: | |
x = x.squeeze().to(device = 'cuda:0', dtype = torch.float) | |
y = y.to(device = 'cuda:0') | |
z = dsmodel(x) | |
val_loss = loss_fn(z,y) | |
preds = torch.exp(z.cpu().data)/torch.sum(torch.exp(z.cpu().data)) | |
loss_sublist = np.append(loss_sublist, val_loss.cpu().data) | |
acc_sublist = np.append(acc_sublist,np.array(np.argmax(preds,axis=1)==y.cpu().data.view(-1)).astype('int'),axis=0) | |
print('VALIDATION BINARY CROSSENTROPY LOSS: ',np.mean(loss_sublist)) | |
print('VALIDATION BINARY ACCURACY: ',np.mean(acc_sublist)) | |
val_ep_loss.append(np.mean(loss_sublist)) | |
val_ep_acc.append(np.mean(acc_sublist)) | |
lr_scheduler.step() | |
dg.on_epoch_end() | |
if np.mean(loss_sublist) <= min_val_loss: | |
min_val_loss = np.mean(loss_sublist) | |
print('Saving model...') | |
torch.save({'model_state_dict': dsmodel.state_dict(), | |
'optimizer_state_dict': dsoptimizer.state_dict()}, | |
'/content/saved_models/cifar10_rn50_p128_sgd0p01_decay0p98_all_lincls.pt') | |
print("Time Taken : %.2f minutes"%((time.time()-stime)/60.0)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment