Last active
September 19, 2022 14:29
-
-
Save sadimanna/fa22e0bb6df059b1a019e7743a7284c7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| class SimCLR_Loss(nn.Module): | |
| def __init__(self, batch_size, temperature): | |
| super().__init__() | |
| self.batch_size = batch_size | |
| self.temperature = temperature | |
| self.mask = self.mask_correlated_samples(batch_size) | |
| self.criterion = nn.CrossEntropyLoss(reduction="sum") | |
| self.similarity_f = nn.CosineSimilarity(dim=2) | |
| def mask_correlated_samples(self, batch_size): | |
| N = 2 * batch_size | |
| mask = torch.ones((N, N), dtype=bool) | |
| mask = mask.fill_diagonal_(0) | |
| for i in range(batch_size): | |
| mask[i, batch_size + i] = 0 | |
| mask[batch_size + i, i] = 0 | |
| return mask | |
| def forward(self, z_i, z_j): | |
| N = 2 * self.batch_size | |
| z = torch.cat((z_i, z_j), dim=0) | |
| sim = self.similarity_f(z.unsqueeze(1), z.unsqueeze(0)) / self.temperature | |
| sim_i_j = torch.diag(sim, self.batch_size) | |
| sim_j_i = torch.diag(sim, -self.batch_size) | |
| # We have 2N samples, but with Distributed training every GPU gets N examples too, resulting in: 2xNxN | |
| positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1) | |
| negative_samples = sim[self.mask].reshape(N, -1) | |
| #SIMCLR | |
| labels = torch.from_numpy(np.array([0]*N)).reshape(-1).to(positive_samples.device).long() #.float() | |
| logits = torch.cat((positive_samples, negative_samples), dim=1) | |
| loss = self.criterion(logits, labels) | |
| loss /= N | |
| return loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment