Created
April 3, 2018 11:20
-
-
Save sagar03d/0632f1a8ef9f491e2a0437f057cc78f9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
data = pd.read_csv('data.csv', sep='|') | |
X = data.drop(['Name', 'md5', 'legitimate'], axis=1).values | |
y = data['legitimate'].values | |
print('Researching important feature based on %i total features\n' % X.shape[1]) | |
# Feature selection using Trees Classifier | |
fsel = ske.ExtraTreesClassifier().fit(X, y) | |
model = SelectFromModel(fsel, prefit=True) | |
X_new = model.transform(X) | |
nb_features = X_new.shape[1] | |
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X_new, y ,test_size=0.2) | |
features = [] | |
print('%i features identified as important:' % nb_features) | |
indices = np.argsort(fsel.feature_importances_)[::-1][:nb_features] | |
for f in range(nb_features): | |
print("%d. feature %s (%f)" % (f + 1, data.columns[2+indices[f]], fsel.feature_importances_[indices[f]])) | |
# XXX : take care of the feature order | |
for f in sorted(np.argsort(fsel.feature_importances_)[::-1][:nb_features]): | |
features.append(data.columns[2+f]) | |
#Algorithm comparison | |
algorithms = { | |
"DecisionTree": tree.DecisionTreeClassifier(max_depth=10), | |
"RandomForest": ske.RandomForestClassifier(n_estimators=50), | |
"GradientBoosting": ske.GradientBoostingClassifier(n_estimators=50), | |
"AdaBoost": ske.AdaBoostClassifier(n_estimators=100), | |
"GNB": GaussianNB() | |
} | |
results = {} | |
print("\nNow testing algorithms") | |
for algo in algorithms: | |
clf = algorithms[algo] | |
clf.fit(X_train, y_train) | |
score = clf.score(X_test, y_test) | |
print("%s : %f %%" % (algo, score*100)) | |
results[algo] = score | |
winner = max(results, key=results.get) | |
print('\nWinner algorithm is %s with a %f %% success' % (winner, results[winner]*100)) | |
# Save the algorithm and the feature list for later predictions | |
print('Saving algorithm and feature list in classifier directory...') | |
joblib.dump(algorithms[winner], 'classifier/classifier.pkl') | |
open('classifier/features.pkl', 'w').write(pickle.dumps(features)) | |
print('Saved') | |
# Identify false and true positive rates | |
clf = algorithms[winner] | |
res = clf.predict(X_test) | |
mt = confusion_matrix(y_test, res) | |
print("False positive rate : %f %%" % ((mt[0][1] / float(sum(mt[0])))*100)) | |
print('False negative rate : %f %%' % ( (mt[1][0] / float(sum(mt[1]))*100))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment