Skip to content

Instantly share code, notes, and snippets.

View sagar03d's full-sized avatar
😎
Life Is Good

Sagar Dolui sagar03d

😎
Life Is Good
View GitHub Profile
#! /usr/bin/python2
import pefile
import os
import array
import math
import pickle
from sklearn.externals import joblib
import sys
import argparse
import pandas as pd
import numpy as np
import pickle
import sklearn.ensemble as ske
from sklearn import cross_validation, tree, linear_model
from sklearn.feature_selection import SelectFromModel
from sklearn.externals import joblib
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
#include <stdio.h>
#include <stdlib.h>
int main()
{
int level;
int levelcount;
int layercount;
int layer;
int star;
import os
import argparse
import random as rand
from environment import Environment
from train import Trainer
from dqn import DQN
parser = argparse.ArgumentParser()
envarg = parser.add_argument_group('Environment')
envarg.add_argument("--game", type=str, default="SpaceInvaders-v0", help="Name of the atari game to test")
envarg.add_argument("--width", type=int, default=84, help="Screen width")
envarg.add_argument("--height", type=int, default=84, help="Screen height")
memarg = parser.add_argument_group('Memory')
memarg.add_argument("--size", type=int, default=100000, help="Memory size.")
memarg.add_argument("--history_length", type=int, default=4, help="Number of most recent frames experiences by the agent.")
import gym
import cv2
class Environment:
def __init__(self, params):
self.gym = gym.make(params.game)
self.observation = None
self.display = params.display
self.terminal = False
import tensorflow as tf
import random as rand
import numpy as np
from convnet import ConvNet
from buff import Buffer
from memory import Memory
class DQN:
data = pd.read_csv('data.csv', sep='|')
X = data.drop(['Name', 'md5', 'legitimate'], axis=1).values
y = data['legitimate'].values
print('Researching important feature based on %i total features\n' % X.shape[1])
# Feature selection using Trees Classifier
fsel = ske.ExtraTreesClassifier().fit(X, y)
model = SelectFromModel(fsel, prefit=True)
X_new = model.transform(X)
@sagar03d
sagar03d / media-query.css
Created August 7, 2018 15:25 — forked from gokulkrishh/media-query.css
CSS Media Queries for Desktop, Tablet, Mobile.
/*
##Device = Desktops
##Screen = 1281px to higher resolution desktops
*/
@media (min-width: 1281px) {
//CSS
sudo apt -y install sudo wget gnupg
wget -q -O- https://debian.koha-community.org/koha/gpg.asc | sudo apt-key add -
sudo apt update
echo 'deb http://debian.koha-community.org/koha stable main bionic' | sudo tee /etc/apt/sources.list.d/koha.list
sudo apt install koha-common