Last active
August 30, 2017 21:42
-
-
Save sagelywizard/ef6d46b147507971e9938e1cc4ce25ce to your computer and use it in GitHub Desktop.
A script for classifying a single sample using my model for the ml4seti competition.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
"""A script for classifying a single sample using my model for the ml4seti competition. | |
e.g. python class_prob.py /path/to/sample.dat /path/to/model.pth | |
""" | |
import sys | |
import torch | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import ibmseti | |
from model import DenseNet | |
def get_spectrogram(filename): | |
raw_file = open(filename, 'rb') | |
aca = ibmseti.compamp.SimCompamp(raw_file.read()) | |
tensor = torch.from_numpy(aca.get_spectrogram()).float().view(1, 1, 384, 512) | |
return Variable(tensor, volatile=True) | |
def get_densenet(model_path): | |
dense = DenseNet(False) | |
dense.eval() | |
state = torch.load(model_path) | |
dense.load_state_dict(state['model']) | |
return dense | |
def main(filename, model_path): | |
spec = get_spectrogram(filename) | |
model = get_densenet(model_path) | |
print(F.softmax(model(spec)).data.view(7).tolist()) | |
if __name__ == '__main__': | |
main(sys.argv[1], sys.argv[2]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment