Created
October 19, 2016 09:33
-
-
Save saiday/f238fd4f414c2e4ee91f2f77c0a34a6d to your computer and use it in GitHub Desktop.
FFT
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| public class FFT { | |
| int n, m; | |
| // Lookup tables. recompute when size of FFT changes. | |
| double[] cos; | |
| double[] sin; | |
| double[] window; | |
| public FFT(int n) { | |
| this.n = n; | |
| this.m = (int)(Math.log(n) / Math.log(2)); | |
| if (n != (1 << m)) { | |
| Log.e(TAG, "FFT length must be power of 2"); | |
| return; | |
| } | |
| // pre-compute tables | |
| cos = new double[n/2]; | |
| sin = new double[n/2]; | |
| for (int i = 0; i < n/2; i++) { | |
| cos[i] = Math.cos(i * -2 * Math.PI / n); | |
| sin[i] = Math.sin(i * -2 * Math.PI / n); | |
| } | |
| makewindow(); | |
| } | |
| private void makewindow() { | |
| // blackman window | |
| // w(n)=0.42-0.5cos{(2*PI*n)/(N-1)}+0.08cos{(4*PI*n)/(N-1)} | |
| window = new double[n]; | |
| for (int i = 0; i < n; i++) { | |
| window[i] = 0.42 - 0.5 * Math.cos(i * 2 * Math.PI / (n - 1)) + 0.08 * Math.cos(i * 4 * Math.PI / (n - 1)); | |
| } | |
| } | |
| public double[] getWindow() { | |
| return window; | |
| } | |
| /*************************************************************** | |
| * fft.c | |
| * Douglas L. Jones | |
| * University of Illinois at Urbana-Champaign | |
| * January 19, 1992 | |
| * http://cnx.rice.edu/content/m12016/latest/ | |
| * | |
| * fft: in-place radix-2 DIT DFT of a complex input | |
| * | |
| * input: | |
| * n: length of FFT: must be a power of two | |
| * m: n = 2**m | |
| * input/output | |
| * x: double array of length n with real part of data | |
| * y: double array of length n with imag part of data | |
| * | |
| * Permission to copy and use this program is granted | |
| * as long as this header is included. | |
| ****************************************************************/ | |
| public void fft(double[] x, double[] y) { | |
| int i, j, k, n1, n2, a; | |
| double c, s, e, t1, t2; | |
| // Bit-reverse | |
| j = 0; | |
| n2 = n / 2; | |
| for (i = 1; i < n - 1; i++) { | |
| n1 = n2; | |
| while (j >= n1) { | |
| j = j - n1; | |
| n1 = n1 / 2; | |
| } | |
| j = j + n1; | |
| if (i < j) { | |
| t1 = x[i]; | |
| x[i] = x[j]; | |
| x[j] = t1; | |
| t1 = y[i]; | |
| y[i] = y[j]; | |
| y[j] = t1; | |
| } | |
| } | |
| // FFT | |
| n1 = 0; | |
| n2 = 1; | |
| for (i = 0; i < m; i++) { | |
| n1 = n2; | |
| n2 = n2 + n2; | |
| a = 0; | |
| for (j = 0; j < n1; j++) { | |
| c = cos[a]; | |
| s = sin[a]; | |
| a += 1 << (m - i - 1); | |
| for (k = j; k < n; k = k + n2) { | |
| t1 = c * x[k + n1] - s * y[k + n1]; | |
| t2 = s * x[k + n1] + c * y[k + n1]; | |
| x[k + n1] = x[k] - t1; | |
| y[k + n1] = y[k] - t2; | |
| x[k] = x[k] + t1; | |
| y[k] = y[k] + t2; | |
| } | |
| } | |
| } | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment