Created
September 27, 2016 14:34
-
-
Save saitodev/3859bab6463359642a3a4566b3fc2a3f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True) | |
import tensorflow as tf | |
from tensorflow.python.framework.graph_util import convert_variables_to_constants | |
def train_and_save(): | |
x = tf.placeholder(tf.float32, [None, 784], name='x') | |
W = tf.Variable(tf.zeros([784, 10])) | |
b = tf.Variable(tf.zeros([10])) | |
y = tf.nn.softmax(tf.matmul(x, W) + b, name='y') | |
y_ = tf.placeholder(tf.float32, [None, 10], name='y_') | |
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy') | |
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
max_steps = 1000 | |
for step in range(max_steps): | |
batch_xs, batch_ys = mnist.train.next_batch(100) | |
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) | |
if (step % 100) == 0: | |
print(step, sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) | |
print(max_steps, sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) | |
minimal_graph = convert_variables_to_constants(sess, sess.graph_def, ['y', 'accuracy']) | |
tf.train.write_graph(minimal_graph, './', 'trained_graph.pb', as_text=False) | |
tf.train.write_graph(minimal_graph, './', 'trained_graph.txt', as_text=True) | |
return | |
def main(): | |
graph = tf.Graph() | |
with graph.as_default(): | |
train_and_save() | |
return | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment