Download the following debian packages either by navigating to the url or by doing a wget
Post Download install the packages by using a software installer or using the
$ sudo dpkg -i
import math | |
import os | |
import json | |
import pandas as pd | |
import requests | |
from tqdm import tqdm | |
import os | |
import json | |
import tempfile | |
from datetime import datetime as dt |
Download the following debian packages either by navigating to the url or by doing a wget
Post Download install the packages by using a software installer or using the
$ sudo dpkg -i
import math | |
import pandas as pd | |
import numpy as np | |
from typing import List, Tuple, Union, Dict | |
from scipy.stats import skew, kurtosis | |
from .errors import StepSizeError, StepTypeError, SeriesError | |
class Statistics: | |
""" | |
Methods to calculate statistics all or one at a time |
series = [1,2,3,4,5] | |
stats = Statistics(series) | |
mean = stats.mean() | |
dev = stats.dev() |
I hereby claim:
I am sakethramanujam on github.
I am perceptiveproton (https://keybase.io/perceptiveproton) on keybase.
I have a public key ASCuTkJ0KbN0EWGMZtesm1qkfdmLW5kXp8n8clZMHjMhKQo
import argparse | |
import re | |
from typing import Dict | |
def args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'-f', '--file', help='Name of file to count words from') | |
parser.add_argument('-n', '--N', help='Number of top items', type=int) |
# !usr/bin/env python3 | |
import requests | |
from bs4 import BeautifulSoup | |
if __name__ == '__main__': | |
url = 'https://www.who.int/countries/en/' | |
content = requests.get(url).content | |
soup = BeautifulSoup(content,'html5lib') | |
divs = soup.findAll('div', attrs={'class':'largebox'}) |
from matplotlib.lines import Line2D | |
from matplotlib.patches import Patch | |
def charmap(label): | |
SUB = str.maketrans("0123456789", "₀₁₂₃₄₅₆₇₈₉") | |
mu = chr(956) | |
sigma = chr(963) | |
beta = chr(946) | |
cmap = {'mean_x': mu+'$_{\ x}$','mean_y':mu+'$_{\ y}$','mean_sum': mu+'$_{\ I}$','mean_mag': mu+'$_{\ mag}$','mean_dir':mu+'$_{\ dir}$', | |
'std_x':sigma+'$_{\ x}$','std_y':sigma+'$_{\ y}$','std_sum':sigma+'$_{\ I}$','std_mag':sigma+'$_{\ mag}$','std_dir':sigma+'$_{\ dir}$', |
The above code can be used as follows
path_to_save_fi = 'your/path/'
save_importances(model,y_test.columns)
import pickle | |
def save_pickle(model): | |
name=input('Name of the model: ') | |
with open(f'{name}.pickle','wb') as model: | |
pickle.dump(rf_model,model) | |
print('Model Saved.') | |
def load_pickle(filename): | |
file = open(filename,'rb') | |
model = pickle.load(file) |