Last active
December 15, 2017 11:41
-
-
Save salihkaragoz/45a6861a04963036055cf0ed29c9771f to your computer and use it in GitHub Desktop.
Training
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from pycocotools.coco import COCO | |
import os | |
import math | |
import keras | |
from keras.models import Sequential, Model | |
from keras.layers import Dense, Activation, Input, Flatten, Dropout | |
from keras.utils import plot_model | |
import cv2 | |
import matplotlib.pyplot as plt | |
def bbox_generator(): | |
weights = np.zeros((90, 140, 17)) | |
output = np.zeros((90, 140, 17)) | |
coco = COCO(os.path.join('', 'annotations', 'person_keypoints_val2017.json')) | |
thres = 0.05 | |
ann_ids = coco.getAnnIds() | |
while 1: | |
#for i in range(1875): | |
# if i%125==0: | |
# print "i = " + str(i) | |
# yield | |
print "listen up" | |
for i in range(len(ann_ids)): | |
print i | |
ann_data = coco.loadAnns(2203726)[0] | |
# ann_ids[i] | |
bbox = ann_data['bbox'] | |
x0 = int(bbox[0]) | |
y0 = int(bbox[1]) | |
x = float(bbox[2]) | |
y = float(bbox[3]) | |
xscale = 90.0 / math.ceil(x) | |
yscale = 140.0 / math.ceil(y) | |
kpx = ann_data['keypoints'][0::3] | |
kpy = ann_data['keypoints'][1::3] | |
kpv = ann_data['keypoints'][2::3] | |
for xy in range(17): | |
if kpv[xy] > 0: | |
a = int(round(kpx[xy] - x0) * xscale) | |
b = int(round(kpy[xy] - y0) * yscale) | |
if a >= 90 and b >= 140: | |
weights[89][139][xy] = 1 | |
continue | |
if a >= 90: | |
weights[89][b][xy] = 1 | |
if b >= 140: | |
weights[a][139][xy] = 1 | |
else: | |
output[a, b, xy] = 1 | |
img_id = ann_data['image_id'] | |
img_data = coco.loadImgs(img_id)[0] | |
ann_data = coco.loadAnns(coco.getAnnIds(img_data['id'])) | |
for a in range(len(ann_data)): | |
kpx = ann_data[a]['keypoints'][0::3] | |
kpy = ann_data[a]['keypoints'][1::3] | |
kpv = ann_data[a]['keypoints'][2::3] | |
for x in range(17): | |
if kpv[x] > 0: | |
if (kpx[x] > bbox[0] - bbox[2] * thres and kpx[x] < bbox[0] + bbox[2] * (1 + thres)): | |
if (kpy[x] > bbox[1] - bbox[3] * thres and kpy[x] < bbox[1] + bbox[3] * (1 + thres)): | |
a = int(round(kpx[x] - x0) * xscale) | |
b = int(round(kpy[x] - y0) * yscale) | |
#print(ann_data[i]['image_id']) | |
if a >= 90 and b >= 140: | |
weights[89][139][x] = 1 | |
print(x0, xscale, bbox[2], a, b) | |
continue | |
if a >= 90: | |
weights[89][b][x] = 1 | |
if b >= 140: | |
weights[a][139][x] = 1 | |
if a < 90 and b < 140: | |
weights[a][b][x] = 1 | |
yield np.expand_dims(weights,axis=0), np.expand_dims(output,axis=0) | |
#model = Sequential() | |
#inputs = Input(shape=(214200)) | |
visible = Input(shape=(90,140,17)) | |
#flatten = Flatten()(visible) | |
hidden1 = Dense(17, activation='relu')(visible) | |
#flatten2 = Flatten()(hidden1) | |
#output = Dense(107100, activation='relu')(flatten2) | |
model = Model(inputs=visible, outputs=hidden1) | |
# Summarize Layers | |
print(model.summary()) | |
# Plot Graph | |
plot_model(model, to_file='test.png') | |
model.compile(loss='categorical_crossentropy', optimizer='sgd') | |
model.fit_generator(bbox_generator(), samples_per_epoch = 6000, nb_epoch=10, verbose=2,callbacks=[], validation_data=None) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment