Forked from prakashjayy/Tranfer_Learning_Keras_02.py
Created
January 16, 2019 07:31
-
-
Save salman-ghauri/2aee1a163457a33c23e153f9487afbc3 to your computer and use it in GitHub Desktop.
Transfer Learning using Keras
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras import applications | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras import optimizers | |
from keras.models import Sequential, Model | |
from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D | |
from keras import backend as k | |
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard, EarlyStopping | |
img_width, img_height = 256, 256 | |
### Build the network | |
img_input = Input(shape=(256, 256, 3)) | |
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input) | |
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) | |
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) | |
# Block 2 | |
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) | |
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) | |
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) | |
model = Model(input = img_input, output = x) | |
model.summary() | |
""" | |
_________________________________________________________________ | |
Layer (type) Output Shape Param # | |
================================================================= | |
input_1 (InputLayer) (None, 256, 256, 3) 0 | |
_________________________________________________________________ | |
block1_conv1 (Conv2D) (None, 256, 256, 64) 1792 | |
_________________________________________________________________ | |
block1_conv2 (Conv2D) (None, 256, 256, 64) 36928 | |
_________________________________________________________________ | |
block1_pool (MaxPooling2D) (None, 128, 128, 64) 0 | |
_________________________________________________________________ | |
block2_conv1 (Conv2D) (None, 128, 128, 128) 73856 | |
_________________________________________________________________ | |
block2_conv2 (Conv2D) (None, 128, 128, 128) 147584 | |
_________________________________________________________________ | |
block2_pool (MaxPooling2D) (None, 64, 64, 128) 0 | |
================================================================= | |
Total params: 260,160.0 | |
Trainable params: 260,160.0 | |
Non-trainable params: 0.0 | |
""" | |
layer_dict = dict([(layer.name, layer) for layer in model.layers]) | |
[layer.name for layer in model.layers] | |
""" | |
['input_1', | |
'block1_conv1', | |
'block1_conv2', | |
'block1_pool', | |
'block2_conv1', | |
'block2_conv2', | |
'block2_pool'] | |
""" | |
import h5py | |
weights_path = 'vgg19_weights.h5' # ('https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels.h5) | |
f = h5py.File(weights_path) | |
list(f["model_weights"].keys()) | |
""" | |
['block1_conv1', | |
'block1_conv2', | |
'block1_pool', | |
'block2_conv1', | |
'block2_conv2', | |
'block2_pool', | |
'block3_conv1', | |
'block3_conv2', | |
'block3_conv3', | |
'block3_conv4', | |
'block3_pool', | |
'block4_conv1', | |
'block4_conv2', | |
'block4_conv3', | |
'block4_conv4', | |
'block4_pool', | |
'block5_conv1', | |
'block5_conv2', | |
'block5_conv3', | |
'block5_conv4', | |
'block5_pool', | |
'dense_1', | |
'dense_2', | |
'dense_3', | |
'dropout_1', | |
'global_average_pooling2d_1', | |
'input_1'] | |
""" | |
# list all the layer names which are in the model. | |
layer_names = [layer.name for layer in model.layers] | |
""" | |
# Here we are extracting model_weights for each and every layer from the .h5 file | |
>>> f["model_weights"]["block1_conv1"].attrs["weight_names"] | |
array([b'block1_conv1/kernel:0', b'block1_conv1/bias:0'], | |
dtype='|S21') | |
# we are assiging this array to weight_names below | |
>>> f["model_weights"]["block1_conv1"]["block1_conv1/kernel:0] | |
<HDF5 dataset "kernel:0": shape (3, 3, 3, 64), type "<f4"> | |
# The list comprehension (weights) stores these two weights and bias of both the layers | |
>>>layer_names.index("block1_conv1") | |
1 | |
>>> model.layers[1].set_weights(weights) | |
# This will set the weights for that particular layer. | |
With a for loop we can set_weights for the entire network. | |
""" | |
for i in layer_dict.keys(): | |
weight_names = f["model_weights"][i].attrs["weight_names"] | |
weights = [f["model_weights"][i][j] for j in weight_names] | |
index = layer_names.index(i) | |
model.layers[index].set_weights(weights) | |
import cv2 | |
import numpy as np | |
import pandas as pd | |
from tqdm import tqdm | |
import itertools | |
import glob | |
features = [] | |
for i in tqdm(files_location): | |
im = cv2.imread(i) | |
im = cv2.resize(cv2.cvtColor(im, cv2.COLOR_BGR2RGB), (256, 256)).astype(np.float32) / 255.0 | |
im = np.expand_dims(im, axis =0) | |
outcome = model_final.predict(im) | |
features.append(outcome) | |
## collect these features and create a dataframe and train a classfier on top of it. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment