Last active
June 10, 2018 21:15
-
-
Save salrashid123/4afca078c6bac1a0490ba937547094ac to your computer and use it in GitHub Desktop.
Google Cloud Logging events as Dataframes
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# virtualenv env | |
# source env/bin/activate | |
# pip install jupyter matplotlib pandas google-cloud-logging | |
#%% | |
import collections | |
def flatten(d, parent_key='', sep='_'): | |
items = [] | |
for k, v in d.items(): | |
new_key = parent_key + sep + k if parent_key else k | |
if isinstance(v, collections.MutableMapping): | |
items.extend(flatten(v, new_key, sep=sep).items()) | |
else: | |
items.append((new_key, v)) | |
return dict(items) | |
#%% | |
import os | |
import pprint | |
os.environ["GOOGLE_CLOUD_DISABLE_GRPC"] = "false" | |
from google.cloud import logging | |
from google.cloud.logging import ASCENDING | |
from google.cloud.logging import DESCENDING | |
pp = pprint.PrettyPrinter(indent=4) | |
FILTER = 'resource.type="bigquery_resource" AND protoPayload.methodName="jobservice.getqueryresults" AND severity="INFO"' | |
client = logging.Client() | |
entries = [] | |
iterator = client.list_entries(filter_=FILTER, order_by=DESCENDING) | |
for page in iterator.pages: | |
print(' Page number: %d' % (iterator.page_number,)) | |
print(' Items in page: %d' % (page.num_items,)) | |
print('Items remaining: %d' % (page.remaining,)) | |
for entry in page: | |
entries.append(entry) | |
print "Number of Log entries recalled: " + str(len(entries)) | |
#%% | |
import copy | |
payloads = [copy.deepcopy(e.payload) for e in entries] | |
payloads[0] | |
#%% | |
for p in payloads: | |
service_data = p.get('serviceData', {}) | |
if not isinstance(service_data, dict): | |
service_data = {} | |
flattened_data = flatten({'serviceData': service_data}) | |
p.update(flattened_data) | |
p.pop('serviceData', None) | |
#%% | |
import pandas | |
df = pandas.DataFrame(payloads) | |
df.head() | |
#%% | |
df.columns.tolist() | |
#%% | |
df[u'serviceData_jobGetQueryResultsResponse_job_jobStatus_state'].value_counts() | |
#%% | |
df['methodName'].value_counts() | |
#%% | |
df.groupby('methodName')['serviceData_jobGetQueryResultsResponse_job_jobStatistics_totalProcessedBytes'].max() | |
#%% | |
x = 'serviceData_jobGetQueryResultsResponse_job_jobStatistics_createTime' | |
y = 'serviceData_jobGetQueryResultsResponse_job_jobStatistics_totalProcessedBytes' | |
df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment