Created
August 24, 2018 12:12
-
-
Save sam-thecoder/01989b2c82a02ae2351f92fac9a2dc43 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
from keras import layers | |
from keras.layers.core import Dense, Activation | |
from keras.models import Sequential | |
from keras.callbacks import EarlyStopping | |
from keras.callbacks import ModelCheckpoint | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
import numpy as np | |
from sklearn.metrics import accuracy_score | |
from keras.layers import LSTM | |
from sklearn import preprocessing | |
# Convert a Pandas dataframe to the x,y inputs that TensorFlow needs | |
def to_xy(df, target): | |
result = [] | |
for x in df.columns: | |
if x != target: | |
result.append(x) | |
# find out the type of the target column. Is it really this hard? :( | |
target_type = df[target].dtypes | |
target_type = target_type[0] if hasattr(target_type, '__iter__') else target_type | |
# Encode to int for classification, float otherwise. TensorFlow likes 32 bits. | |
if target_type in (np.int64, np.int32): | |
# Classification | |
dummies = pd.get_dummies(df[target]) | |
return df.as_matrix(result).astype(np.float32), dummies.as_matrix().astype(np.float32) | |
else: | |
# Regression | |
return df.as_matrix(result).astype(np.float32), df.as_matrix([target]).astype(np.float32) | |
# Encode text values to indexes(i.e. [1],[2],[3] for red,green,blue). | |
def encode_text_index(df, name): | |
le = preprocessing.LabelEncoder() | |
df[name] = le.fit_transform(df[name]) | |
return le.classes_ | |
X,y = to_xy(df,"Actual") | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) | |
model = Sequential() | |
model.add(Dense(80, activation='relu', input_dim=X_train.shape[1])) | |
model.add(Dense(80, activation='relu')) | |
model.add(Dense(80, activation='relu')) | |
model.add(Dense(80, activation='relu')) | |
model.add(Dense(80, activation='relu')) | |
model.add(Dense(y_train.shape[1],activation='softmax')) | |
#model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) | |
#model.fit(X_train, y_train, epochs=1000) | |
model.compile(loss='categorical_crossentropy', optimizer='adam') | |
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-2, patience=25, verbose=1, mode='auto') | |
checkpointer = ModelCheckpoint(filepath="best_weights.hdf5", verbose=0, save_best_only=True) # save best model | |
model.fit(X_train, y_train, validation_data=(X_test, y_test), callbacks=[monitor,checkpointer], verbose=2, epochs=1000) | |
model.load_weights('best_weights.hdf5') # load weights from best model | |
# Train on 2362 samples, validate on 591 samples | |
# Epoch 1/1000 | |
# - 3s - loss: 4.0986 - val_loss: 3.2790 | |
# Epoch 2/1000 | |
# - 0s - loss: 1.9809 - val_loss: 0.4511 | |
# Epoch 3/1000 | |
# - 0s - loss: 0.8889 - val_loss: 0.3435 | |
# Epoch 4/1000 | |
# - 0s - loss: 0.8331 - val_loss: 0.4944 | |
# Epoch 5/1000 | |
# - 0s - loss: 0.7122 - val_loss: 2.7115 | |
# Epoch 6/1000 | |
# - 0s - loss: 2.3070 - val_loss: 2.1721 | |
# Epoch 7/1000 | |
# - 0s - loss: 0.7217 - val_loss: 0.3364 | |
# Epoch 8/1000 | |
# - 0s - loss: 0.4693 - val_loss: 0.2795 | |
# Epoch 9/1000 | |
# - 0s - loss: 1.1468 - val_loss: 0.2923 | |
# Epoch 10/1000 | |
# - 0s - loss: 0.3399 - val_loss: 0.2821 | |
# Epoch 11/1000 | |
# - 0s - loss: 0.6785 - val_loss: 0.6393 | |
# Epoch 12/1000 | |
# - 0s - loss: 0.4028 - val_loss: 0.3180 | |
# Epoch 13/1000 | |
# - 0s - loss: 0.3777 - val_loss: 0.9051 | |
# Epoch 14/1000 | |
# - 0s - loss: 0.3900 - val_loss: 0.2362 | |
# Epoch 15/1000 | |
# - 0s - loss: 0.3052 - val_loss: 0.3325 | |
# Epoch 16/1000 | |
# - 0s - loss: 0.1849 - val_loss: 0.5999 | |
# Epoch 17/1000 | |
# - 0s - loss: 0.3221 - val_loss: 0.1700 | |
# Epoch 18/1000 | |
# - 0s - loss: 0.3261 - val_loss: 0.5254 | |
# Epoch 19/1000 | |
# - 0s - loss: 0.3268 - val_loss: 0.2400 | |
# Epoch 20/1000 | |
# - 0s - loss: 0.1985 - val_loss: 0.1696 | |
# Epoch 21/1000 | |
# - 0s - loss: 0.3524 - val_loss: 0.1792 | |
# Epoch 22/1000 | |
# - 0s - loss: 0.3941 - val_loss: 0.2260 | |
# Epoch 23/1000 | |
# - 0s - loss: 0.1884 - val_loss: 0.1476 | |
# Epoch 24/1000 | |
# - 0s - loss: 0.1158 - val_loss: 0.1179 | |
# Epoch 25/1000 | |
# - 0s - loss: 0.2895 - val_loss: 0.1734 | |
# Epoch 26/1000 | |
# - 0s - loss: 0.2313 - val_loss: 0.1787 | |
# Epoch 27/1000 | |
# - 0s - loss: 0.3110 - val_loss: 0.1681 | |
# Epoch 28/1000 | |
# - 1s - loss: 0.1183 - val_loss: 0.1103 | |
# Epoch 29/1000 | |
# - 1s - loss: 0.1586 - val_loss: 0.1469 | |
# Epoch 30/1000 | |
# - 0s - loss: 0.0938 - val_loss: 0.1351 | |
# Epoch 31/1000 | |
# - 0s - loss: 0.1677 - val_loss: 0.1374 | |
# Epoch 32/1000 | |
# - 1s - loss: 0.1437 - val_loss: 0.1216 | |
# Epoch 33/1000 | |
# - 1s - loss: 0.8587 - val_loss: 0.1599 | |
# Epoch 34/1000 | |
# - 1s - loss: 0.1596 - val_loss: 0.1297 | |
# Epoch 35/1000 | |
# - 1s - loss: 0.3959 - val_loss: 0.1348 | |
# Epoch 36/1000 | |
# - 0s - loss: 0.2298 - val_loss: 0.2588 | |
# Epoch 37/1000 | |
# - 0s - loss: 0.1740 - val_loss: 0.2553 | |
# Epoch 38/1000 | |
# - 0s - loss: 0.1085 - val_loss: 0.1412 | |
# Epoch 39/1000 | |
# - 1s - loss: 0.0834 - val_loss: 0.0953 | |
# Epoch 40/1000 | |
# - 0s - loss: 0.1084 - val_loss: 0.1288 | |
# Epoch 41/1000 | |
# - 0s - loss: 0.0784 - val_loss: 0.1193 | |
# Epoch 42/1000 | |
# - 0s - loss: 0.0904 - val_loss: 0.1151 | |
# Epoch 43/1000 | |
# - 0s - loss: 0.2667 - val_loss: 0.3757 | |
# Epoch 44/1000 | |
# - 0s - loss: 0.1796 - val_loss: 0.1106 | |
# Epoch 45/1000 | |
# - 1s - loss: 0.1933 - val_loss: 0.3802 | |
# Epoch 46/1000 | |
# - 0s - loss: 0.2617 - val_loss: 0.3527 | |
# Epoch 47/1000 | |
# - 1s - loss: 0.1542 - val_loss: 0.4486 | |
# Epoch 48/1000 | |
# - 0s - loss: 0.1990 - val_loss: 0.1225 | |
# Epoch 49/1000 | |
# - 1s - loss: 0.7622 - val_loss: 0.2424 | |
# Epoch 50/1000 | |
# - 0s - loss: 0.2389 - val_loss: 0.1226 | |
# Epoch 51/1000 | |
# - 0s - loss: 0.0747 - val_loss: 0.0958 | |
# Epoch 52/1000 | |
# - 1s - loss: 0.1290 - val_loss: 0.2079 | |
# Epoch 53/1000 | |
# - 0s - loss: 0.0889 - val_loss: 0.1068 | |
# Epoch 54/1000 | |
# - 1s - loss: 0.0584 - val_loss: 0.0944 | |
# Epoch 55/1000 | |
# - 1s - loss: 0.2151 - val_loss: 0.1194 | |
# Epoch 56/1000 | |
# - 1s - loss: 0.1633 - val_loss: 0.0893 | |
# Epoch 57/1000 | |
# - 1s - loss: 0.0686 - val_loss: 0.0960 | |
# Epoch 58/1000 | |
# - 0s - loss: 0.0607 - val_loss: 0.0884 | |
# Epoch 59/1000 | |
# - 1s - loss: 0.0651 - val_loss: 0.1915 | |
# Epoch 60/1000 | |
# - 0s - loss: 0.0562 - val_loss: 0.0995 | |
# Epoch 61/1000 | |
# - 1s - loss: 1.9859 - val_loss: 5.9858 | |
# Epoch 62/1000 | |
# - 0s - loss: 2.9463 - val_loss: 0.9567 | |
# Epoch 63/1000 | |
# - 0s - loss: 1.5587 - val_loss: 0.1932 | |
# Epoch 64/1000 | |
# - 0s - loss: 1.1365 - val_loss: 2.4021 | |
# Epoch 00064: early stopping | |
pred = model.predict(X_test) | |
print("Shape: {}".format(pred.shape)) | |
print(pred) | |
# Shape: (591, 2) | |
# [[1.1338343e-02 9.8866165e-01] | |
# [0.0000000e+00 1.0000000e+00] | |
# [1.4060745e-05 9.9998593e-01] | |
# ... | |
# [7.8182465e-01 2.1817538e-01] | |
# [0.0000000e+00 1.0000000e+00] | |
# [3.2087931e-04 9.9967909e-01]] | |
predict_classes = np.argmax(pred,axis=1) | |
print("Predictions: {}".format(predict_classes)) | |
print("Expected: {}".format(np.argmax(y_test, axis=1))) | |
y_test_arg = np.argmax(y_test, axis=1) | |
# Predictions: [1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 | |
# 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 | |
# 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 | |
# 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 | |
# 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 | |
# 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 | |
# 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 | |
# 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 | |
# 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 | |
# 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 | |
# 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 | |
# 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 | |
# 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 | |
# 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 | |
# 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 | |
# 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1] | |
# Expected: [1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 | |
# 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 | |
# 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 | |
# 1 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 | |
# 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 | |
# 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 | |
# 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 | |
# 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 | |
# 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 | |
# 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 | |
# 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 | |
# 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 | |
# 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 | |
# 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 | |
# 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 | |
# 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1] | |
correct = accuracy_score(y_test_arg,predict_classes) | |
print("Accuracy: {}".format(correct)) | |
#Accuracy: 0.9712351945854484 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment