Skip to content

Instantly share code, notes, and snippets.

@sam-thecoder
Created August 7, 2018 10:37
Show Gist options
  • Save sam-thecoder/2e22e0d9b6aa87ee10317e2c724cb2dc to your computer and use it in GitHub Desktop.
Save sam-thecoder/2e22e0d9b6aa87ee10317e2c724cb2dc to your computer and use it in GitHub Desktop.
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
df = pd.read_csv('data/BCHAIN.csv')
df_copy = df.copy()
#Not needed for prediction
df_copy.drop('Date', axis=1, inplace=True)
y = df_copy['Predict'].values
X = df_copy[['Value USD', 'Drop 7', 'Up 7', 'Mean Change 7', 'Change', 'Min 7', 'Max 7', 'Mean 7']].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
#Results
#0.7915869980879541
y = df_copy['Predict'].values
X = df_copy[['Value USD', 'Drop 7', 'Up 7', 'Mean Change 7', 'Change']].values
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
#Results
#0.9770554493307839
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment