Created
March 19, 2021 20:52
-
-
Save samirsaci/a341a83447d3da193515f5d3e5935297 to your computer and use it in GitHub Desktop.
Create nodes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def order_brand(PATH_IN): | |
''' List of all brands in each order''' | |
# Import DataFrame | |
df_rec = pd.read_excel(PATH_IN) | |
# Listing Unique Brands | |
df_ordbr = pd.DataFrame(df_rec.groupby(['ORDER_NUMBER'])['BRAND'].unique()) | |
df_ordbr.columns = ['list_brand'] | |
# source = list brands | |
list_brand = list(df_rec['BRAND'].unique()) | |
# boolean column per brand for each order: is brand in order ? | |
for br in list_brand: | |
df_ordbr[br] = df_ordbr['list_brand'].apply(lambda t: br in t) | |
# unique combinations of brands boolean | |
df_con = pd.DataFrame(df_ordbr.reset_index()[df_ordbr.columns[1:]]).drop_duplicates() | |
return list_brand, df_ordbr, df_con, df_rec | |
def create_nodes(df_con, n_groups): | |
''' Create nodes from df_con''' | |
list_col, list_cont = [], [] | |
# how many brands are ordered with this brand | |
for col in df_con.columns: | |
list_col.append(col) | |
list_cont.append((df_con[df_con[col] == True].sum() > 0).sum()) | |
df_nodes = pd.DataFrame({'name': list_col, 'group':list_cont}) | |
df_nodes.set_index('name', inplace = True) | |
# group by range of values | |
range_value = np.ceil(df_nodes['group'].max()/n_groups) | |
df_nodes['group'] = n_groups - (df_nodes['group']/range_value).apply(np.floor).astype(int) | |
return df_nodes |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment