Created
September 27, 2012 10:24
-
-
Save samklr/3793333 to your computer and use it in GitHub Desktop.
ScalaFistes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
object FuncourseWithUncleMartin{ | |
*/ | |
object Setsss{ | |
def contains(s: Set, elem: Int): Boolean = s(elem) | |
def singleton(elem: Int): Set = Set(elem)//(x :Int) => x == elem | |
def union(s: Set, t: Set): Set = (x : Int) => s(x) || t(x) | |
def intersect(s: Set, t: Set): Set = (x : Int) => s(x) && t(x) | |
def diff(s: Set, t: Set): Set = (x: Int) => s(x) && !t(x) | |
def filter(s: Set, p: Int => Boolean): Set = (x :Int) =>p(x) && s(x) | |
val bound = 1000 | |
def forall(s: Set, p: Int => Boolean): Boolean = { | |
def iter(a: Int): Boolean = { | |
if (s(a) && !p(a)) false | |
else if (a > bound) true | |
else iter(a+1) | |
} | |
iter(-bound) | |
} | |
def exists(s: Set, p: Int => Boolean): Boolean = { | |
def iter(a: Int): Boolean = { | |
if (s(a) && p(a)) true | |
else if (a > bound) false | |
else iter(a+1) | |
} | |
iter(-bound) | |
} | |
def exists(s: Set, p: Int => Boolean): Boolean = ! forall(s, (i:Int) => !p(i)) | |
def map(s: Set, f: Int => Int): Set = { | |
def iterate (x : Int) : Set = { | |
if (x > bound ) ((y:Int) => false) | |
else if (s(x)) union(singleton(f(x)),iterate(x +1)) | |
else iterate(x+1) | |
} | |
iterate(-bound) | |
} | |
def pascal(c: Int, r: Int): Int = if (c == r || c==0 || r==1) 1 else pascal(c-1,r-1) + pascal(c,r-1) | |
def balance(chars: List[Char]): Boolean = balance_aux(chars, Nil) | |
def balance_aux(chars : List[Char], stack : List[Char]) : Boolean = (chars, stack) match { | |
case (Nil, Nil) => true | |
case (Nil, _) => false | |
case (h :: tail, stack) => h match { | |
case '(' => balance_aux(tail, h :: stack) | |
case ')' => !stack.isEmpty && balance_aux(tail, stack.tail) | |
case _ => balance_aux(tail, stack) | |
} | |
} | |
def countChange(money: Int, coins: List[Int]): Int = (money, coins) match { | |
case (0,_) => 1 | |
case (_, Nil) => 0 | |
case (_ , h :: tail) => if (money < 0) 0 else countChange(money , tail) + countChange(money - h , coins) | |
} | |
//NonEMpty | |
def filter0(p : Tweet => Boolean, accu : TweetSet) : TweetSet = | |
if (isEmpty) accu | |
else if (p(elem)) new NonEmpty(elem,left.filter0(p, accu),right.filter0(p,accu)) | |
else (remove(elem)).filter0(p,accu) | |
override def union(that: TweetSet): TweetSet = | |
if (that.isEmpty) this | |
else (that.head, that.tail.isEmpty) match { | |
case (_ , true) => if (!contains(that.head)) incl(that.head)else this | |
case (_, false) => if (!contains(that.head)) incl(that.head).union(that.tail) else union(that.tail) | |
} | |
override def ascendingByRetweet0(accu : Trending): Trending = | |
if (isEmpty) accu | |
else if (tail.isEmpty) (accu + head) | |
else remove(findMin).ascendingByRetweet0(accu + findMin) | |
//EMpty | |
def filter0(p: Tweet => Boolean, accu: TweetSet): TweetSet = new Empty | |
override def union(that: TweetSet): TweetSet = that | |
override def ascendingByRetweet0(trend : Trending): Trending = new EmptyTrending | |
object GoogleVsApple { | |
val google = List("android", "Android", "galaxy", "Galaxy", "nexus", "Nexus") | |
val apple = List("ios", "iOS", "iphone", "iPhone", "ipad", "iPad") | |
val googleTweets = TweetReader.allTweets.filter((x:Tweet) => x.text.contains("google")) | |
val appleTweets = TweetReader.allTweets.filter((x:Tweet) => x.text.contains("apple")) | |
val trending: Trending = (googleTweets union appleTweets).ascendingByRetweet | |
} | |
} | |
package patmat | |
import common._ | |
import scala.util.Sorting | |
import scala.annotation.tailrec | |
/** | |
* Assignment 4: Huffman coding | |
* | |
*/ | |
object Huffman { | |
/** | |
* A huffman code is represented by a binary tree. | |
* | |
* Every `Leaf` node of the tree represents one character of the alphabet that the tree can encode. | |
* The weight of a `Leaf` is the frequency of appearance of the character. | |
* | |
* The branches of the huffman tree, the `Fork` nodes, represent a set containing all the characters | |
* present in the leaves below it. The weight of a `Fork` node is the sum of the weights of these | |
* leaves. | |
*/ | |
abstract class CodeTree | |
case class Fork(left: CodeTree, right: CodeTree, chars: List[Char], weight: Int) extends CodeTree | |
case class Leaf(char: Char, weight: Int) extends CodeTree | |
// Part 1: Basics | |
def weight(tree: CodeTree): Int = tree match { | |
case Leaf(c,w) => w | |
case Fork(left ,right ,chrs,w)=>weight(left) + weight(right) | |
} | |
def chars(tree: CodeTree): List[Char] = tree match{ | |
case Leaf(char, w) => List(char) | |
case Fork(left, right, charList, w) => chars(left) ::: chars(right) | |
} | |
def makeCodeTree(left: CodeTree, right: CodeTree) = | |
Fork(left, right, chars(left) ::: chars(right), weight(left) + weight(right)) | |
// Part 2: Generating Huffman trees | |
/** | |
* In this assignment, we are working with lists of characters. This function allows | |
* you to easily create a character list from a given string. | |
*/ | |
def string2Chars(str: String): List[Char] = str.toList | |
/** | |
* This function computes for each unique character in the list `chars` the number of | |
* times it occurs. For example, the invocation | |
* | |
* times(List('a', 'b', 'a')) | |
* | |
* should return the following (the order of the resulting list is not important): | |
* | |
* List(('a', 2), ('b', 1)) | |
* | |
* The type `List[(Char, Int)]` denotes a list of pairs, where each pair consists of a | |
* character and an integer. Pairs can be constructed easily using parentheses: | |
* | |
* val pair: (Char, Int) = ('c', 1) | |
* | |
* In order to access the two elements of a pair, you can use the accessors `_1` and `_2`: | |
* | |
* val theChar = pair._1 | |
* val theInt = pair._2 | |
* | |
* Another way to deconstruct a pair is using pattern matching: | |
* | |
* pair match { | |
* case (theChar, theInt) => | |
* println("character is: "+ theChar) | |
* println("integer is : "+ theInt) | |
* } | |
*/ | |
def times(chars: List[Char]): List[(Char, Int)] = chars match { | |
case Nil => Nil | |
case e :: tail => (e, chars.count(_ == e)) :: times(tail.filterNot (_ == e)) | |
} | |
/** | |
* Returns a list of `Leaf` nodes for a given frequency table `freqs`. | |
* | |
* The returned list should be ordered by ascending weights (i.e. the | |
* head of the list should have the smallest weight), where the weight | |
* of a leaf is the frequency of the character. | |
*/ | |
def makeOrderedLeafList(freqs: List[(Char, Int)]): List[Leaf] = { | |
val sortedFreqs = Sorting.stableSort(freqs, | |
(e1 : (Char, Int), e2 : (Char, Int)) => e1._2 <= e2._2) | |
.toList | |
sortedFreqs map (e => Leaf(e._1, e._2)) | |
} | |
/** | |
* Checks whether the list `trees` contains only one single code tree. | |
*/ | |
def singleton(trees: List[CodeTree]): Boolean = trees match { | |
case leaf :: Nil => true | |
case _ => false | |
} | |
/** | |
* The parameter `trees` of this function is a list of code trees ordered | |
* by ascending weights. | |
* | |
* This function takes the first two elements of the list `trees` and combines | |
* them into a single `Fork` node. This node is then added back into the | |
* remaining elements of `trees` at a position such that the ordering by weights | |
* is preserved. | |
* | |
* If `trees` is a list of less than two elements, that list should be returned | |
* unchanged. | |
*/ | |
def combine(trees: List[CodeTree]): List[CodeTree] = { | |
Sorting.stableSort(trees, (t1 : CodeTree , t2: CodeTree) => weight(t1) <= weight(t2)).toList | |
if (trees.size <= 2) trees | |
else { | |
val ftree = makeCodeTree(trees(0), trees(1)) | |
List(ftree) ::: trees.tail.tail | |
} | |
} | |
/** | |
* This function will be called in the following way: | |
* | |
* until(singleton, combine)(trees) | |
* | |
* where `trees` is of type `List[CodeTree]`, `singleton` and `combine` refer to | |
* the two functions defined above. | |
* | |
* In such an invocation, `until` should call the two functions until the list of | |
* code trees contains only one single tree, and then return that singleton list. | |
* | |
* Hint: before writing the implementation, | |
* - start by defining the parameter types such that the above example invocation | |
* is valid. The parameter types of `until` should match the argument types of | |
* the example invocation. Also define the return type of the `until` function. | |
* - try to find sensible parameter names for `xxx`, `yyy` and `zzz`. | |
*/ | |
// def until(s: List[CodeTree] => Boolean, c: List[CodeTree]=> List[CodeTree])(treeList: List[CodeTree]): List[CodeTree] = treeList match { | |
// case Nil => Nil | |
// case e :: Nil => treeList | |
// case e:: tail => if (singleton(tail)) List(makeCodeTree(e, tail(0))) | |
// else { | |
// val lst = until(s,c)(tail); | |
// List(makeCodeTree(e, lst(0))) | |
// } | |
// } | |
// | |
def until(s: List[CodeTree] => Boolean, c: List[CodeTree]=> List[CodeTree])(treeList: List[CodeTree]): List[CodeTree]= | |
treeList match { | |
case Nil => Nil | |
case a :: Nil => treeList | |
case a::a1:: q => if (s(q)) c(makeCodeTree(a, a1) :: q) | |
else c(makeCodeTree(a,a1) :: until(s,c)(q)) | |
} | |
/** | |
* This function creates a code tree which is optimal to encode the text `chars`. | |
* | |
* The parameter `chars` is an arbitrary text. This function extracts the character | |
* frequencies from that text and creates a code tree based on them. | |
*/ | |
def createCodeTree(chars: List[Char]): CodeTree = { | |
val freqs = times(chars) | |
(until(singleton, combine)(combine(makeOrderedLeafList(freqs))))(0) | |
// freqs match { | |
// case Nil => throw new Exception("Empty car List, can't create an empty code Tree") | |
// case (c,w)::Nil => Leaf(c,w) | |
// case a::q => { | |
// val lst = combine(makeOrderedLeafList(freqs)) | |
// until(singleton, combine)(lst)(0) | |
// | |
// } | |
// } | |
} | |
// Part 3: Decoding | |
type Bit = Int | |
/** | |
* This function decodes the bit sequence `bits` using the code tree `tree` and returns | |
* the resulting list of characters. | |
* Decoding starts at the root of the tree. Given a sequence of bits to decode, | |
* we successively read the bits, and for each 0, we choose the left branch, | |
* and for each 1 we choose the right branch. When we reach a leaf, | |
* we decode the corresponding character and then start again at the root of the tree. | |
* As an example, given the Huffman tree above, the sequence of bits, 10001010 corresponds to BAC. | |
* Implementation | |
*/ | |
//def decode(tree: CodeTree, bits: List[Bit]) : List[Char]= decode_aux (tree, bits, List.empty) | |
@tailrec | |
def decode_aux (tree: CodeTree, bits: List[Bit], ret : List[Char]) : List[Char]= (tree, bits) match { | |
case (Fork(l,r,ch,w), Nil) => throw new Exception ("Bad Encoding") | |
case (Leaf(c,w), Nil) => (c::ret).reverse | |
case (Leaf(c,w), _) => decode_aux(tree, bits.tail,c::ret) | |
case (Fork(l,r,ch,w), a::q) => if (a == 0) decode_aux(l,q,ret) else decode_aux(r,q,ret) | |
} | |
def decode (tree: CodeTree, bits: List[Bit] ): List[Char] = { | |
def decode1 (bits: List[Bit], current: CodeTree): List[Char] = bits match { | |
case Nil => Nil | |
case head :: tail => { | |
val br =chooseBranch (head, current) | |
br match { | |
case Leaf(symbol,w) => symbol :: decode1(tail, tree) | |
case Fork(l,r,c,w) => decode1(tail, br) | |
} | |
} | |
} | |
decode1 (bits, tree) | |
} | |
def chooseBranch (bit: Bit, branch: CodeTree) = | |
(bit, branch) match { | |
case (_, Leaf(w,c)) => branch | |
case (0, Fork(l,r,c,w)) => l | |
case (1 , Fork(l,r,c,w)) =>r | |
} | |
/** | |
* A Huffman coding tree for the French language. | |
* Generated from the data given at | |
* http://fr.wikipedia.org/wiki/Fr%C3%A9quence_d%27apparition_des_lettres_en_fran%C3%A7ais | |
*/ | |
val frenchCode: CodeTree = Fork(Fork(Fork(Leaf('s',121895),Fork(Leaf('d',56269),Fork(Fork(Fork(Leaf('x',5928),Leaf('j',8351),List('x','j'),14279),Leaf('f',16351),List('x','j','f'),30630),Fork(Fork(Fork(Fork(Leaf('z',2093),Fork(Leaf('k',745),Leaf('w',1747),List('k','w'),2492),List('z','k','w'),4585),Leaf('y',4725),List('z','k','w','y'),9310),Leaf('h',11298),List('z','k','w','y','h'),20608),Leaf('q',20889),List('z','k','w','y','h','q'),41497),List('x','j','f','z','k','w','y','h','q'),72127),List('d','x','j','f','z','k','w','y','h','q'),128396),List('s','d','x','j','f','z','k','w','y','h','q'),250291),Fork(Fork(Leaf('o',82762),Leaf('l',83668),List('o','l'),166430),Fork(Fork(Leaf('m',45521),Leaf('p',46335),List('m','p'),91856),Leaf('u',96785),List('m','p','u'),188641),List('o','l','m','p','u'),355071),List('s','d','x','j','f','z','k','w','y','h','q','o','l','m','p','u'),605362),Fork(Fork(Fork(Leaf('r',100500),Fork(Leaf('c',50003),Fork(Leaf('v',24975),Fork(Leaf('g',13288),Leaf('b',13822),List('g','b'),27110),List('v','g','b'),52085),List('c','v','g','b'),102088),List('r','c','v','g','b'),202588),Fork(Leaf('n',108812),Leaf('t',111103),List('n','t'),219915),List('r','c','v','g','b','n','t'),422503),Fork(Leaf('e',225947),Fork(Leaf('i',115465),Leaf('a',117110),List('i','a'),232575),List('e','i','a'),458522),List('r','c','v','g','b','n','t','e','i','a'),881025),List('s','d','x','j','f','z','k','w','y','h','q','o','l','m','p','u','r','c','v','g','b','n','t','e','i','a'),1486387) | |
/** | |
* What does the secret message say? Can you decode it? | |
* For the decoding use the `frenchCode' Huffman tree defined above. | |
*/ | |
val secret: List[Bit] = List(0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,1,1,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,1) | |
/** | |
* Write a function that returns the decoded secret | |
*/ | |
def decodedSecret: List[Char] = decode(frenchCode, secret) | |
// Part 4a: Encoding using Huffman tree | |
/** | |
* This function encodes `text` using the code tree `tree` | |
* into a sequence of bits. | |
* For a given Huffman tree, one can obtain the encoded representation of a character | |
* by traversing from the root of the tree to the leaf containing the character. | |
* Along the way, when a left branch is chosen, a 0 is added to the representation, | |
* and when a right branch is chosen, 1 is added to the representation. | |
* Thus, for the Huffman tree above, the character D is encoded as 1011. | |
*/ | |
def encode(tree: CodeTree)(text: List[Char]): List[Bit] = { | |
def encodeChar (tree : CodeTree, Char char , ret : List[Bit]) : List[Bit]= { | |
tree match { | |
case Leaf(c,w) => if (c == char ) ret else (encodeChar) | |
case Fork (l,r,chs,w) => | |
} | |
} | |
} | |
// def successiveMerge (leafSet: List[Tree]): Tree = leafSet match { | |
// case head :: Nil => head // when 1, we have 1 tree, rather than a set of leaves | |
// case head :: tail => successiveMerge (adjoinSet (makeCodeTree (head, tail.first), tail.tail)) | |
// case Nil => throw new RuntimeException("Invalid leaf set: "+leafSet) | |
// Part 4b: Encoding using code table | |
type CodeTable = List[(Char, List[Bit])] | |
/** | |
* This function returns the bit sequence that represents the character `char` in | |
* the code table `table`. | |
*/ | |
def codeBits(table: CodeTable)(char: Char): List[Bit] = ??? | |
/** | |
* Given a code tree, create a code table which contains, for every character in the | |
* code tree, the sequence of bits representing that character. | |
* | |
* Hint: think of a recursive solution: every sub-tree of the code tree `tree` is itself | |
* a valid code tree that can be represented as a code table. Using the code tables of the | |
* sub-trees, think of how to build the code table for the entire tree. | |
*/ | |
def convert(tree: CodeTree): CodeTable = ??? | |
/** | |
* This function takes two code tables and merges them into one. Depending on how you | |
* use it in the `convert` method above, this merge method might also do some transformations | |
* on the two parameter code tables. | |
*/ | |
def mergeCodeTables(a: CodeTable, b: CodeTable): CodeTable = ??? | |
/** | |
* This function encodes `text` according to the code tree `tree`. | |
* | |
* To speed up the encoding process, it first converts the code tree to a code table | |
* and then uses it to perform the actual encoding. | |
*/ | |
def quickEncode(tree: CodeTree)(text: List[Char]): List[Bit] = ??? | |
def main(args: Array[String]) { | |
println (decodedSecret) | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment