Created
January 27, 2018 16:15
-
-
Save sammosummo/dbc28e35cc40bd7f9e020f6920a43142 to your computer and use it in GitHub Desktop.
Creates a simple DDM figure
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import hddm | |
import numpy as np | |
from scipy.stats import norm | |
import matplotlib.pyplot as plt | |
from matplotlib.gridspec import GridSpec | |
from tqdm import tqdm | |
def setupfig(): | |
"""Tweak for the target journal. | |
""" | |
single_column = (3.346, 2.301) | |
fig = plt.figure(figsize=single_column) | |
gs = GridSpec(3, 1, height_ratios=[1, 2, 1], hspace=0) | |
return fig, gs | |
def delabel(ax): | |
"""Strip labels. | |
""" | |
ax.xaxis.set_ticklabels([]) | |
ax.yaxis.set_ticklabels([]) | |
ax.xaxis.set_ticks([]) | |
ax.yaxis.set_ticks([]) | |
def kde(ax, x, mx, c): | |
"""Plot a KDE for reaction times. | |
""" | |
x = x[x <= mx] | |
bandwidth = .8 * x.std() * x.size ** (-1 / 5.) | |
support = np.linspace(0, mx, 500) | |
kernels = [] | |
for x_i in tqdm(x): | |
kernel = norm(x_i, bandwidth).pdf(support) | |
kernels.append(kernel) | |
density = np.sum(kernels, axis=0) | |
my = np.max(density) | |
ax.plot(support, density, c=c) | |
ax.fill_between(support, 0, density, alpha=.5, facecolor=c) | |
ax.set_ylim(0, my * 1.05) | |
delabel(ax) | |
return my | |
def traces(ax, n, mx, **params): | |
"""Draw example of diffusions. | |
""" | |
x = np.linspace(0, mx, 101) | |
delta = x[1] | |
nd_samples = np.round(params['t'] / delta).astype(int) | |
d_samples = len(x) - nd_samples | |
y0 = np.zeros(nd_samples) * np.nan | |
y0[-1] = 0 | |
for i in range(n): | |
y1 = np.cumsum( | |
norm.rvs(params['v'] * delta, np.sqrt(delta), size=d_samples)) | |
y = params['a'] * params['z'] + np.concatenate([y0, y1]) | |
try: | |
idx1 = np.where(y > params['a'])[0][0] + 1 | |
except: | |
idx1 = np.inf | |
try: | |
idx2 = np.where(y < 0)[0][0] + 1 | |
except: | |
idx2 = np.inf | |
if idx1 < idx2: | |
y[idx1:] = np.nan | |
ax.plot(x, y, c='C0', zorder=-12, alpha=.25) | |
if idx2 < idx1: | |
y[idx2:] = np.nan | |
ax.plot(x, y, c='C3', zorder=-11, alpha=.25) | |
ax.set_ylim(0, params['a']) | |
ax.set_xlim(0, mx) | |
delabel(ax) | |
def ddmfig(**params): | |
"""Draw a DDM plot with the given parameter values. | |
""" | |
mx = 3.5 | |
size = 15000 | |
ntraces = 2 | |
# set up fig | |
fig, gs = setupfig() | |
# traces | |
ax = plt.subplot(gs[1]) | |
traces(ax, ntraces, mx, **params) | |
# data for kdes | |
df, _ = hddm.generate.gen_rand_data(params, subjs=1, size=size) | |
# top KDE | |
ax = plt.subplot(gs[0]) | |
my = kde(ax, df[df.response == 1].rt.values, mx, 'C0') | |
# bottom KDE | |
ax = plt.subplot(gs[2]) | |
kde(ax, df[df.response == 0].rt.values, mx, 'C3') | |
ax.set_ylim(0, my * 1.05) | |
ax.invert_yaxis() | |
# remove whitespace around fig | |
plt.tight_layout(0) | |
def main(): | |
np.random.seed(25) | |
ddmfig(v=0.7, a=1.5, t=0.6, z=0.5) | |
plt.savefig('tmp.pdf') | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment