Created
February 11, 2018 09:28
-
-
Save samson-wang/582f6f2aeaf136a57a11038aafd267ca to your computer and use it in GitHub Desktop.
A work-around for Realtime_Multi-Person_Pose_Estimation testing on coco dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
addpath('util/jsonlab/'); | |
addpath('src'); | |
addpath('util'); | |
addpath('util/ojwoodford-export_fig-5735e6d/'); | |
%addpath('/data/Repo/Realtime_Multi-Person_Pose_Estimation/training/dataset/COCO/coco/MatlabAPI'); | |
fid = fopen('../val2014_flist.2k.csv'); | |
data=textscan(fid,'%f %s','delimiter',','); | |
fclose(fid); | |
display(data); | |
for i = 1:length(data{1}) | |
coco_val(i).file = data{2}{i}; | |
coco_val(i).image_id = data{1}(i); | |
end | |
orderCOCO = [1,0 7,9,11, 6,8,10, 13,15,17, 12,14,16, 3,2,5,4]; | |
mode = 1; | |
param = config(mode); | |
model = param.model(param.modelID); | |
net = caffe.Net(model.deployFile, model.caffemodel, 'test'); | |
pred(length(coco_val)) = struct('annorect', [], 'candidates', []); | |
% iterate all val images | |
display(length(coco_val)); | |
for i = 1:length(coco_val) | |
display(i); | |
fn = strcat('/data/Realtime_Multi-Person_Pose_Estimation/training/dataset/COCO/images/', coco_val(i).file); | |
display(coco_val(i).file); | |
oriImg = imread(fn); | |
scale0 = 368/size(oriImg, 1); | |
twoLevel = 1; | |
[final_score, ~] = applyModel(oriImg, param, net, scale0, 1, 1, 0, twoLevel); | |
vis = 0; | |
[candidates, subset] = connect56LineVec(oriImg, final_score, param, vis); | |
point_cnt = 0; | |
for ridxPred = 1:size(subset,1) | |
point = struct([]); | |
part_cnt = 0; | |
for part = 1:18 | |
if part == 2 | |
continue; | |
end | |
index = subset(ridxPred,part); | |
if(index >0) | |
part_cnt = part_cnt +1; | |
point(part_cnt).x = candidates(index,1); | |
point(part_cnt).y = candidates(index,2); | |
point(part_cnt).score = candidates(index,3); | |
point(part_cnt).id = orderCOCO(part); | |
end | |
end | |
point_cnt = point_cnt +1; | |
pred(i).annorect(point_cnt).annopoints.point = point; | |
%pred(i).annorect(point_cnt).annopoints.score = subset(ridxPred,end-1)/subset(ridxPred,end); | |
pred(i).annorect(point_cnt).annopoints.score = subset(ridxPred,end-1); | |
end | |
pred(i).candidates = candidates; | |
end | |
%% convert the format | |
json_for_coco_eval = struct('image_id', [], 'category_id', [], 'keypoints', [], 'score', []); | |
count = 1; | |
for j = 1:length(pred) | |
for d = 1:length(pred(j).annorect) | |
json_for_coco_eval(count).image_id = coco_val(j).image_id; | |
json_for_coco_eval(count).category_id = 1; | |
json_for_coco_eval(count).keypoints = zeros(3, 17); | |
%length(pred(j).annorect(d).annopoints.point) | |
for p = 1:length(pred(j).annorect(d).annopoints.point) | |
point = pred(j).annorect(d).annopoints.point(p); | |
json_for_coco_eval(count).keypoints(1, point.id) = point.x - 0.5; | |
json_for_coco_eval(count).keypoints(2, point.id) = point.y - 0.5; | |
json_for_coco_eval(count).keypoints(3, point.id) = 1; | |
end | |
json_for_coco_eval(count).keypoints = reshape(json_for_coco_eval(count).keypoints, [1 51]); | |
json_for_coco_eval(count).score = pred(j).annorect(d).annopoints.score *length(pred(j).annorect(d).annopoints.point); | |
count = count + 1; | |
end | |
end | |
display(json_for_coco_eval); | |
opt.FileName = 'result.json'; | |
opt.FloatFormat = '%.3f'; | |
savejson('', json_for_coco_eval, opt); | |
%evalDemo(opt.FileName); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment