Last active
January 15, 2021 06:38
-
-
Save samueljackson92/2ae25e89d08d6c805237c017cea8effd to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
from pathlib import Path, PurePath | |
from image import ImageLoader, Regrid | |
from skimage.transform import resize | |
from skimage.exposure import exposure | |
import numpy as np | |
import sys | |
from PIL import Image as PillowImage | |
from PIL import ImageEnhance | |
import skimage | |
print('Path is ') | |
path = 'data/S3A_SL_1_RBT____20201120T100620_20201120T100920_20201121T162430_0179_065_179_1980_LN2_O_NT_004.SEN3/' | |
print('---') | |
product = ImageLoader(path) | |
# Get Channels | |
s1 = product.load_reflectance_channel(path, 1, 'an').to_array().values[0] | |
s3 = product.load_reflectance_channel(path, 3, 'an').to_array().values[0] | |
s5 = product.load_reflectance_channel(path, 5, 'an').to_array().values[0] | |
# Deal with NaNs | |
s1 = np.where(np.isnan(s1), 0, s1) | |
s3 = np.where(np.isnan(s3), 0, s3) | |
s5 = np.where(np.isnan(s5), 0, s5) | |
# Clip pixels > 1 to 1. This keeps the image in the range 0-1 | |
s1 = np.where(s1 > 1., 1., s1) | |
s3 = np.where(s3 > 1., 1., s3) | |
s5 = np.where(s5 > 1., 1., s5) | |
# Construct Image | |
img = np.zeros((s1.shape[0], s1.shape[1], 3)) | |
img[..., 0] = np.minimum(1, (s3 + s5) / 2) | |
img[..., 1] = np.minimum(1, s3) | |
img[..., 2] = np.minimum(1, (s3 + s1) / 2) | |
#Produce Image | |
img = skimage.exposure.rescale_intensity(img, out_range=(0, 255)) | |
rgbImage = PillowImage.fromarray(np.uint8(img)) | |
rgbImage.save('out.jpg') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment