Created
November 1, 2022 10:12
-
-
Save samuelsaari/59cba7a997c36024b07c502253c3ac90 to your computer and use it in GitHub Desktop.
Latent Class Growth Modelling with multinomial response in R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#--------------------------------------------------------- | |
# libraries | |
rm(list=ls()) | |
library(flexmix) # GMM & LCGM | |
library(TraMineR) # example data | |
library(OpenRepGrid)# random words for headings | |
library(khroma) # color palletttes | |
library(tidyverse) | |
library(car) | |
library(jtools) # for a nice theme | |
#--------------------------------------------------------- | |
# parameters & options | |
TEST_RUN=T | |
set.seed(102) | |
theme_set(theme_nice(base_family = 'Consolas' )) | |
#--------------------------------------------------------- | |
# loading and wrangling data | |
data(biofam) | |
biofam | |
biofam <- biofam %>% rename(gender=sex) | |
d <- biofam %>% select(.,gender,starts_with('a'),p02r01) | |
d$id <- 1:nrow(d) | |
d <- d %>% pivot_longer(.,names_to = "age",cols = starts_with('a'),values_to="rel_stat") | |
d <- d %>% mutate(across(c(gender,rel_stat), as.factor)) | |
d <- d %>% transform(age=str_replace(age,"a","")) | |
d <- d %>% mutate(age=as.integer(age)) | |
d <- tibble(d) | |
# 1 single | |
# 2 married | |
# 3 child | |
# 4 divorced | |
d$rel_stat <- car::recode(d$rel_stat,"0=1;1=1;2=2;3=2;4=3;5=3;6=3;7=4") | |
#--------------------------------------------------------- | |
# making alternative ways to run the model | |
if (TEST_RUN) { | |
d <- d %>% filter(p02r01 %in% c("no denomination or religion")) | |
nr_of_classes <- 3 | |
} else { | |
nr_of_classes <- 4 | |
} | |
vector_of_chosen_classes <- 1:nr_of_classes | |
levels_rel_stat <- 1:4 # note that this is defined manually | |
#---------------------------------------------------------------------------------- | |
#---------------------------------------------------------------------------------- | |
#---------------------------------------------------------------------------------- | |
# running Latent class growth modelling | |
lcgm_formula <- as.formula(rel_stat~age + I(age^2) + gender + gender:age) | |
lcgm <- flexmix::stepFlexmix(.~ .| id, | |
data=d, | |
k=nr_of_classes, # would be 1:12 in real analysis | |
nrep=1, # would be 50 in real analysis to avoid local maxima | |
control = list(iter.max = 500, minprior = 0), | |
model = flexmix::FLXMRmultinom(lcgm_formula,varFix=T,fixed = ~0)) | |
#--------------------------------------------------------------------------------- | |
#---------------------------------------------------------------------------------- | |
#---------------------------------------------------------------------------------- | |
#---------------------------------------------------------------------------------- | |
#fitting the values | |
fitted_lcgm <- fitted(lcgm) | |
fitted_tibbles <- lapply(fitted_lcgm, function(x) cbind(x,d$age,d$gender)) | |
fitted_tibbles <- lapply(fitted_tibbles,function(x) setNames(as_tibble(x,.name_repair = "minimal"),c(levels_rel_stat,"age","gender") )) | |
fitted_tibbles_long <-purrr::map(fitted_tibbles, function(x) { | |
pivot_longer(data=x,cols = -all_of(c("age","gender")), names_to = "rel_stat", values_to = "probability") | |
} ) | |
fitted_tibbles_long <- purrr::map(fitted_tibbles_long,distinct) # remove duplicate rows | |
# have tried two altenative approaches to predict the probabilites - predicting values by age and gender as opposed to fitting to original data,and calculating the fitted values by hand (https://www.ibm.com/support/pages/compute-predicted-probabilities-multinomial-logistic-new-cases-or-outside-spss) with identical results | |
#---------------------------------------------------------------------------------- | |
# helpers for plotting | |
text_size <- 12 | |
title_size <- text_size*1.2 | |
line_size=2 | |
line_size_legend <- line_size*1.75 | |
gender_labels <- c(`1`="\U2642",`2`="\U2640") | |
rw <- function() { | |
randomWords(nr_of_classes) | |
} | |
(class_titles <- paste(vector_of_chosen_classes,"class:",rw(),rw(),rw())) | |
#-------------------------------------------------------------------------------- | |
# plotting | |
plot_single_class_line <- function(CLASS_DATA,TITLE){ | |
ggplot(CLASS_DATA, aes(x = age,y = probability,color=rel_stat)) + | |
geom_line(size=line_size) + | |
scale_color_vibrant() + | |
guides(color = guide_legend(reverse = TRUE)) + | |
# common for both plots + | |
ggtitle(TITLE) + | |
labs (x = NULL, y=NULL) + | |
facet_wrap(~ gender,strip.position="left",labeller=labeller(gender=gender_labels))+ | |
theme(text = element_text(size=text_size), | |
#legend.key.size = unit(1,"pt"), | |
legend.title=element_blank(), | |
plot.title = element_text(size =title_size,margin=margin(b=5)), | |
strip.text.y.left= element_text(angle=0, size=text_size*1.6)) | |
} | |
plot_single_class_line(fitted_tibbles_long[[1]],TITLE=class_titles[1]) | |
class_plot_list_line<- purrr::map(vector_of_chosen_classes,function(i) plot_single_class_line(fitted_tibbles_long[[i]],TITLE=class_titles[i])) | |
(plot_lcgm_line <- do.call(ggpubr::ggarrange,c(class_plot_list_line, list(common.legend = TRUE, legend = "bottom",ncol=1)))) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment