Created
November 26, 2010 22:46
-
-
Save samueltardieu/717306 to your computer and use it in GitHub Desktop.
Prime numbers manipulation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Prime number generation and number factorization.""" | |
import bisect, itertools, random, sys | |
_primes = [2] | |
_miller_rabin_limit = 48611 # 5000th prime | |
_miller_rabin_security = 7 | |
def modpow (a, b, c): | |
"""Efficiently compute (a^b)%c where a, b and c are positive integers.""" | |
if b == 1: return a % c | |
d = b//2 | |
x = modpow (a, d, c) | |
x = x*x%c | |
if b % 2 == 1: x = x*a%c | |
return x | |
def miller_rabin (n, t = _miller_rabin_security): | |
"""Apply Miller-Rabin primality test to detect whether n is prime or not. | |
The test is run t times.""" | |
if n % 2 == 0: return False | |
r = (n-1)//2 | |
for s in itertools.count (1): | |
if r % 2: break | |
r //= 2 | |
for tt in xrange (t): | |
a = int (random.uniform (2, n-1)) | |
y = modpow (a, r, n) | |
if y != 1 and y != n-1: | |
for j in xrange (1, s): | |
y = y**2 % n | |
if y == 1: return False | |
if y == n-1: break | |
if y != n-1: return False | |
return True | |
def _is_prime (i): | |
if i > _miller_rabin_limit: return miller_rabin (i) | |
s = int (i**0.5) | |
for j in _primes: | |
if i % j == 0: return False | |
if j > s: return True | |
return True | |
def _gen_primes (): | |
for i in xrange (3, sys.maxint, 2): | |
if _is_prime (i): | |
_primes.append (i) | |
yield i | |
_primary = _gen_primes () | |
def _gen_primes (minval): | |
i = 0 | |
if minval: | |
l = _primes[-1] | |
if minval > l: | |
while minval > l: l =_primary.next () | |
i = len (_primes) - 1 | |
else: | |
i = bisect.bisect_left (_primes, minval) | |
for i in itertools.count (i): | |
if i == len (_primes): yield _primary.next () | |
else: yield _primes[i] | |
def gen_primes (maxval = None, minval = None): | |
"""Prime numbers generator. If minval is given, only primes greater or | |
equal to minval are returned. If maxval is given, only primes smaller | |
or equal to maxval are returned. | |
>>> for p in gen_primes(5): print p | |
... | |
2 | |
3 | |
5 | |
7 | |
11""" | |
if maxval: | |
return itertools.takewhile (lambda x: x<=maxval, _gen_primes (minval)) | |
return _gen_primes (minval) | |
def gen_factors (n, duplicates = True): | |
"""Generator for factors of n (n > 1). If duplicates is False, do not | |
send the same factor more than once.""" | |
assert n > 1 | |
if n > _miller_rabin_limit and miller_rabin (n): | |
yield n | |
return | |
s = int (n**0.5) | |
for i in gen_primes (): | |
if i > s: | |
yield n | |
return | |
if n % i == 0: | |
yield i | |
n //= i | |
while n % i == 0: | |
if duplicates: yield i | |
n //= i | |
if n == 1: return | |
if n > _miller_rabin_limit and miller_rabin (n): | |
yield n | |
return | |
s = int (n**0.5) | |
def factors (n): | |
"""Factorize n (n > 1) into its prime factors. Return a dictionary where | |
keys are prime factors and values are powers. | |
>>> factors(18) | |
{2: 1, 3: 2}""" | |
l = {} | |
for i in gen_factors (n): | |
try: l[i] += 1 | |
except KeyError: l[i] = 1 | |
return l | |
def factorslist (n): | |
"""Return a list of prime factors of n (n > 1). | |
>>> factorslist(18) | |
[2, 3, 3]""" | |
return list (gen_factors (n)) | |
def is_prime (n): | |
"""Check whether n is prime or not.""" | |
if n < 2: return False | |
return gen_factors(n).next() == n | |
def ufactors (n): | |
"""Return the list of unique prime factors of n (n > 1). | |
>>> ufactors(100) | |
[2, 5]""" | |
return list (gen_factors(n, duplicates = False)) | |
def nfactors (n): | |
"""Return the number of unique prime factors of n.""" | |
return len (ufactors (n)) | |
def totient (n): | |
"""Euler's totient function. Returns the number of integers between | |
1 and n-1 relatively prime to n (n > 0). | |
>>> totient(6) | |
2 | |
(6 is relatively prime to 1 and 5)""" | |
if n == 1: return 0 | |
num = den = 1 | |
for p in gen_factors (n, duplicates = False): | |
num *= (p-1) | |
den *= p | |
return n * num // den | |
_s = {1: 1} | |
def s (n): | |
"""Sum of divisors of n (n > 0). | |
>>> s(6) | |
12 | |
(divisors of 6 are 1, 2, 3 and 6, summing to 12)""" | |
if not _s.has_key (n): | |
t = 1 | |
for (p, k) in factors(n).items(): | |
t *= (p**(k+1)-1)//(p-1) | |
_s[n] = t | |
return _s[n] | |
if __name__ == '__main__': | |
# Quick test -- add primes up to 100,000 and compare to J result to: | |
# +/p:i.(p:^:_1)100000x | |
assert sum (gen_primes (100000)) == 454396537 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment