Last active
October 8, 2020 20:42
-
-
Save sandeepkumar-skb/3302f758ccd79228e48b21ffacd7fb61 to your computer and use it in GitHub Desktop.
GroupNorm implementation in Pytorch
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
class GroupNorm(nn.Module): | |
def __init__(self, num_groups, num_features, eps=1e-5): | |
super(GroupNorm, self).__init__() | |
self.weight = nn.Parameter(torch.ones(1,num_features,1,1)) | |
self.bias = nn.Parameter(torch.zeros(1,num_features,1,1)) | |
self.num_groups = num_groups | |
self.eps = eps | |
def forward(self, x): | |
N,C,H,W = x.size() | |
G = self.num_groups | |
assert C % G == 0 | |
x = x.view(N,G,-1) | |
mean = x.mean(-1, keepdim=True) | |
var = x.var(-1, keepdim=True) | |
x = (x-mean) / (var+self.eps).sqrt() | |
x = x.view(N,C,H,W) | |
return x * self.weight + self.bias | |
gn = GroupNorm(num_groups=32, num_channels=128) | |
nn_gn = nn.GroupNorm(num_groups=32, num_channels=128) | |
x = torch.rand([10,128,56,56]) | |
x_gn = gn(x) | |
nn_x_gn = nn_gn(x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
result: tensor(7.0453e-05, grad_fn=)