Created
January 5, 2021 21:23
-
-
Save sandeepkumar-skb/4ff04f4dd65a417747306eac6d190ef4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class DSU{ | |
std::vector<int> parent; | |
std::vector<int> rank; | |
public: | |
DSU(int N) : parent(N,0), rank(N,0) | |
{ | |
for (int i=0; i<N; ++i){ | |
parent[i] = i; | |
} | |
} | |
int find(int node){ | |
if (this->parent[node] != node){ | |
this->parent[node] = find(this->parent[node]); | |
} | |
return this->parent[node]; | |
} | |
bool union_(int node1, int node2){ | |
int p1{find(node1)}, p2{find(node2)}; | |
if (p1 == p2) return false; | |
if (this->rank[p1] > this->rank[p2]){ | |
this->parent[p2] = p1; | |
++this->rank[p1]; | |
} | |
else{ | |
this->parent[p1] = p2; | |
++this->rank[p2]; | |
} | |
return true; | |
} | |
}; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class DSU: | |
def __init__(self, N): | |
self.parent = [i for i in range(N)] | |
self.rank = [0] * N | |
def find (self, node): | |
if self.parent[node] != node: | |
self.parent[node] = self.find(self.parent[node]) | |
return self.parent[node] | |
def _union(self, node1, node2): | |
p1,p2 = self.find(node1), self.find(node2) | |
if p1 != p2: | |
if self.rank[p1] > self.rank[p2]: | |
self.parent[p2] = p1 | |
self.rank[p1] += 1 | |
else: | |
self.parent[p1] = p2 | |
self.rank[p2] += 1 | |
return True | |
return False |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Disjoint-Set Data Structure with rank and path compression.
If
N
is the number of nodesTime Complexity :
O(N.α(N)) = O(N)
; O(α(N)) doesn't exceed 4.Space Complexity :
O(N)