Last active
October 10, 2020 00:30
-
-
Save sandeepkumar-skb/a0a3780e82c0d010d9e376980e118e6e to your computer and use it in GitHub Desktop.
Multi-Streaming Experiments
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <thread> | |
#include <chrono> | |
#include <iostream> | |
const int N = 1 << 20; | |
__global__ void kernel(float *x, int n) | |
{ | |
int tid = threadIdx.x + blockIdx.x * blockDim.x; | |
for (int i = tid; i < n; i += blockDim.x * gridDim.x) { | |
x[i] = sqrt(pow(3.14159,i)); | |
} | |
} | |
void launch_kernel() | |
{ | |
float *data; | |
cudaMalloc(&data, N * sizeof(float)); | |
kernel<<<1, 64>>>(data, N); | |
cudaStreamSynchronize(0); | |
} | |
int main() | |
{ | |
const int num_threads = 8; | |
std::array<std::thread, num_threads> workers; | |
std::chrono::high_resolution_clock::time_point gpu_start; | |
std::chrono::high_resolution_clock::time_point gpu_end ; | |
std::chrono::duration<double> gpu_span; | |
int count = 100; | |
while(count > 0){ | |
gpu_start = std::chrono::high_resolution_clock::now(); | |
for (int i = 0; i < num_threads; i++) { | |
workers[i] = std::thread(launch_kernel); | |
} | |
for (int i = 0; i < num_threads; i++) { | |
workers[i].join(); | |
} | |
cudaDeviceReset(); | |
gpu_end = std::chrono::high_resolution_clock::now(); | |
gpu_span = std::chrono::duration_cast<std::chrono::duration<double>>(gpu_end - gpu_start); | |
std::cout << "gpu time: " << gpu_span.count()*1000 << "ms" << std::endl; | |
--count; | |
} | |
return 0; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <chrono> | |
#include <iostream> | |
const int N = 1 << 20; | |
__global__ void kernel(float *x, int n) | |
{ | |
int tid = threadIdx.x + blockIdx.x * blockDim.x; | |
for (int i = tid; i < n; i += blockDim.x * gridDim.x) { | |
x[i] = sqrt(pow(3.14159,i)); | |
} | |
} | |
int main() | |
{ | |
const int num_streams = 8; | |
cudaStream_t streams[num_streams]; | |
float *data[num_streams]; | |
std::chrono::high_resolution_clock::time_point gpu_start; | |
std::chrono::high_resolution_clock::time_point gpu_end ; | |
std::chrono::duration<double> gpu_span; | |
int count = 25; | |
while(count >0){ | |
gpu_start = std::chrono::high_resolution_clock::now(); | |
for (int i = 0; i < num_streams; i++) { | |
//cudaStreamCreate(&streams[i]); | |
cudaMalloc(&data[i], N * sizeof(float)); | |
// launch one worker kernel per stream | |
//kernel<<<1, 64, 0, streams[i]>>>(data[i], N); | |
kernel<<<1, 64 >>>(data[i], N); | |
// launch a dummy kernel on the default stream | |
//kernel<<<1, 1>>>(0, 0); | |
} | |
cudaDeviceReset(); | |
gpu_end = std::chrono::high_resolution_clock::now(); | |
gpu_span = std::chrono::duration_cast<std::chrono::duration<double>>(gpu_end - gpu_start); | |
std::cout << "gpu time: " << gpu_span.count()*1000 << "ms" << std::endl; | |
--count; | |
} | |
return 0; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <chrono> | |
#include <iostream> | |
const int N = 1 << 20; | |
__global__ void kernel(float *x, int n) | |
{ | |
int tid = threadIdx.x + blockIdx.x * blockDim.x; | |
for (int i = tid; i < n; i += blockDim.x * gridDim.x) { | |
x[i] = sqrt(pow(3.14159,i)); | |
} | |
} | |
int main() | |
{ | |
const int num_streams = 8; | |
cudaStream_t streams[num_streams]; | |
float *data[num_streams]; | |
std::chrono::high_resolution_clock::time_point gpu_start; | |
std::chrono::high_resolution_clock::time_point gpu_end ; | |
std::chrono::duration<double> gpu_span; | |
int count = 25; | |
while(count >0){ | |
gpu_start = std::chrono::high_resolution_clock::now(); | |
for (int i = 0; i < num_streams; i++) { | |
cudaStreamCreate(&streams[i]); | |
cudaMalloc(&data[i], N * sizeof(float)); | |
// launch one worker kernel per stream | |
kernel<<<1, 64, 0, streams[i]>>>(data[i], N); | |
//kernel<<<1, 64 >>>(data[i], N); | |
// launch a dummy kernel on the default stream | |
//kernel<<<1, 1>>>(0, 0); | |
} | |
cudaDeviceReset(); | |
gpu_end = std::chrono::high_resolution_clock::now(); | |
gpu_span = std::chrono::duration_cast<std::chrono::duration<double>>(gpu_end - gpu_start); | |
std::cout << "gpu time: " << gpu_span.count()*1000 << "ms" << std::endl; | |
--count; | |
} | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Single Thread and Default Stream
Single Thread and Multiple Stream
Multi Thread and Single Stream
Multi Thread and Multi Stream