Skip to content

Instantly share code, notes, and snippets.

@sangheestyle
Last active August 29, 2015 14:11
Show Gist options
  • Save sangheestyle/2534714dc1330bc54e92 to your computer and use it in GitHub Desktop.
Save sangheestyle/2534714dc1330bc54e92 to your computer and use it in GitHub Desktop.
Analyze submissions for NLP2014 project
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import pandas as pd
import matplotlib.pyplot as plt
def gen_analysis(files, filter_by="category"):
"""
return DataFrame including accuracy data filtered by options
parameters
----------
filter_by:
category
sentence_position
"""
submissions = {}
for ii in files:
submission_date = ii.split('_')[1]
print ">>> ", submission_date, filter_by
submission = pd.read_csv(ii, names=['Question ID', 'Estimation'],
index_col='Question ID', header=0)
submission.sort_index(inplace=True)
# accuracy of each category per submission
num_items_cat = master_set.groupby(filter_by).size()
is_correct = master_set['Answer'] == submission['Estimation']
num_correct_items_cat = \
master_set[is_correct].groupby(filter_by).size()
category_accuracy = num_correct_items_cat / num_items_cat
# accuracy of submission
num_questions = len(master_set)
num_correct = len(master_set[is_correct])
submission_accuracy = float(num_correct) / float(num_questions)
# accuracy of submission with accuracy of each category
accu = category_accuracy.append(pd.Series(submission_accuracy,
index=['accuracy']))
print accu, "\n"
# collect accuracy information
submissions.update({pd.to_datetime(submission_date): accu})
# making dataframe
df = pd.DataFrame(submissions).T
return df
def get_difference(p1, p2):
"""
Give you two list of difference between two points
"""
est = 'Estimation'
qid = 'Question ID'
ans = 'Answer'
p1_sub = pd.read_csv(p1, names=[qid , est], index_col=qid, header=0)
p1_sub.sort_index(inplace=True)
p2_sub = pd.read_csv(p2, names=[qid, est], index_col=qid, header=0)
p2_sub.sort_index(inplace=True)
df1 = p1_sub[master_set[ans]==p1_sub[est]]
df2 = p2_sub[master_set[ans]==p2_sub[est]]
ds1 = set([tuple([index, row[est]]) for index, row in df1.iterrows()])
ds2 = set([tuple([index, row[est]]) for index, row in df2.iterrows()])
worse_list = list(ds1.difference(ds2))
better_list = list(ds2.difference(ds1))
print ">>> better:", p1, p2
for ii in better_list:
print ii
print ">>> worse:", p1, p2
for ii in worse_list:
print ii
return better_list, worse_list
if __name__ == "__main__":
# test_set and answer_key path
test_set_path = 'test.csv'
answer_key_path = 'key.csv'
# 4 submission files from 30 submissions
submission_files = ['submit_20141118_a9c3331.csv',
'submit_20141203_702eb0a.csv',
'submit_20141211_ec6ccf6.csv',
'submit_20141220_06c89ea.csv']
# read base date
test_set = pd.read_csv(test_set_path, index_col='Question ID',
usecols=[0, 3, 5], header=0)
answer_key = pd.read_csv(answer_key_path,
index_col='Question ID',
header=0)
master_set = answer_key.join(test_set)
master_set.sort_index(inplace=True)
#df_by_category = gen_analysis(submission_files, filter_by='category')
#df_by_position = gen_analysis(submission_files,
# filter_by="Sentence Position")
# with from 0.0 to 1.0
# ax = df.plot(ylim=(0,1), marker='x')
#df_by_category.plot(figsize=(12, 10), marker='o')
#df_by_position.plot(figsize=(12, 10), marker='o')
# plt.show()
get_difference(submission_files[0], submission_files[1])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment