Last active
August 29, 2015 14:11
-
-
Save sangheestyle/2534714dc1330bc54e92 to your computer and use it in GitHub Desktop.
Analyze submissions for NLP2014 project
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import matplotlib.pyplot as plt | |
def gen_analysis(files, filter_by="category"): | |
""" | |
return DataFrame including accuracy data filtered by options | |
parameters | |
---------- | |
filter_by: | |
category | |
sentence_position | |
""" | |
submissions = {} | |
for ii in files: | |
submission_date = ii.split('_')[1] | |
print ">>> ", submission_date, filter_by | |
submission = pd.read_csv(ii, names=['Question ID', 'Estimation'], | |
index_col='Question ID', header=0) | |
submission.sort_index(inplace=True) | |
# accuracy of each category per submission | |
num_items_cat = master_set.groupby(filter_by).size() | |
is_correct = master_set['Answer'] == submission['Estimation'] | |
num_correct_items_cat = \ | |
master_set[is_correct].groupby(filter_by).size() | |
category_accuracy = num_correct_items_cat / num_items_cat | |
# accuracy of submission | |
num_questions = len(master_set) | |
num_correct = len(master_set[is_correct]) | |
submission_accuracy = float(num_correct) / float(num_questions) | |
# accuracy of submission with accuracy of each category | |
accu = category_accuracy.append(pd.Series(submission_accuracy, | |
index=['accuracy'])) | |
print accu, "\n" | |
# collect accuracy information | |
submissions.update({pd.to_datetime(submission_date): accu}) | |
# making dataframe | |
df = pd.DataFrame(submissions).T | |
return df | |
def get_difference(p1, p2): | |
""" | |
Give you two list of difference between two points | |
""" | |
est = 'Estimation' | |
qid = 'Question ID' | |
ans = 'Answer' | |
p1_sub = pd.read_csv(p1, names=[qid , est], index_col=qid, header=0) | |
p1_sub.sort_index(inplace=True) | |
p2_sub = pd.read_csv(p2, names=[qid, est], index_col=qid, header=0) | |
p2_sub.sort_index(inplace=True) | |
df1 = p1_sub[master_set[ans]==p1_sub[est]] | |
df2 = p2_sub[master_set[ans]==p2_sub[est]] | |
ds1 = set([tuple([index, row[est]]) for index, row in df1.iterrows()]) | |
ds2 = set([tuple([index, row[est]]) for index, row in df2.iterrows()]) | |
worse_list = list(ds1.difference(ds2)) | |
better_list = list(ds2.difference(ds1)) | |
print ">>> better:", p1, p2 | |
for ii in better_list: | |
print ii | |
print ">>> worse:", p1, p2 | |
for ii in worse_list: | |
print ii | |
return better_list, worse_list | |
if __name__ == "__main__": | |
# test_set and answer_key path | |
test_set_path = 'test.csv' | |
answer_key_path = 'key.csv' | |
# 4 submission files from 30 submissions | |
submission_files = ['submit_20141118_a9c3331.csv', | |
'submit_20141203_702eb0a.csv', | |
'submit_20141211_ec6ccf6.csv', | |
'submit_20141220_06c89ea.csv'] | |
# read base date | |
test_set = pd.read_csv(test_set_path, index_col='Question ID', | |
usecols=[0, 3, 5], header=0) | |
answer_key = pd.read_csv(answer_key_path, | |
index_col='Question ID', | |
header=0) | |
master_set = answer_key.join(test_set) | |
master_set.sort_index(inplace=True) | |
#df_by_category = gen_analysis(submission_files, filter_by='category') | |
#df_by_position = gen_analysis(submission_files, | |
# filter_by="Sentence Position") | |
# with from 0.0 to 1.0 | |
# ax = df.plot(ylim=(0,1), marker='x') | |
#df_by_category.plot(figsize=(12, 10), marker='o') | |
#df_by_position.plot(figsize=(12, 10), marker='o') | |
# plt.show() | |
get_difference(submission_files[0], submission_files[1]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment