Last active
August 29, 2015 14:11
-
-
Save sangheestyle/2e2d05219b467f1252be to your computer and use it in GitHub Desktop.
Interpreting sumissions for NLP project.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import matplotlib.pyplot as plt | |
# test_set and answer_key path | |
test_set_path = 'test.csv' | |
answer_key_path = 'key.csv' | |
# 4 submission files from 30 submissions | |
submission_files = ['submit_20141118_a9c3331.csv', | |
'submit_20141203_702eb0a.csv', | |
'submit_20141211_ec6ccf6.csv', | |
'submit_20141220_06c89ea.csv'] | |
# read base date | |
test_set = pd.read_csv(test_set_path, index_col='Question ID', | |
usecols=[0, 3, 5], header=0) | |
answer_key = pd.read_csv(answer_key_path, index_col='Question ID', header=0) | |
master_set = answer_key.join(test_set) | |
master_set.sort_index(inplace=True) | |
submissions = {} | |
for ii in submission_files: | |
submission_date = ii.split('_')[1] | |
print ">>> ", submission_date | |
submission = pd.read_csv(ii, names=['Question ID', 'Estimation'], | |
index_col='Question ID', header=0) | |
submission.sort_index(inplace=True) | |
# accuracy of each category per submission | |
num_items_cat = master_set.groupby('category').size() | |
is_correct = master_set['Answer'] == submission['Estimation'] | |
num_correct_items_cat = master_set[is_correct].groupby('category').size() | |
category_accuracy = num_correct_items_cat / num_items_cat | |
# accuracy of submission | |
num_questions = len(master_set) | |
num_correct = len(master_set[is_correct]) | |
submission_accuracy = float(num_correct) / float(num_questions) | |
# accuracy of submission with accuracy of each category | |
accu = category_accuracy.append(pd.Series(submission_accuracy, | |
index=['accuracy'])) | |
print accu, "\n" | |
# collect accuracy information | |
submissions.update({pd.to_datetime(submission_date): accu}) | |
# making dataframe | |
df = pd.DataFrame(submissions).T | |
# with from 0.0 to 1.0 | |
#ax = df.plot(ylim=(0,1), marker='x') | |
ax = df.plot(figsize=(12, 10), marker='o') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment