Created
April 22, 2019 19:00
-
-
Save sanjoy/11ebbf10290a2b3afd415e2952431723 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow.compat.v1 as tf | |
import tensorflow.xla as xla | |
import numpy as np | |
tf.disable_eager_execution() | |
LABELS = 10 | |
HIDDEN_SIZE = 256 | |
BATCH_SIZE = 64 | |
FEAT_DIM = 784 | |
xla_flag = True | |
def model_fn(features, labels): | |
with tf.variable_scope("fc", use_resource=True): | |
net = tf.keras.layers.Dense(units=HIDDEN_SIZE, | |
activation=tf.nn.relu)(features) | |
logits = tf.keras.layers.Dense(units=LABELS)(net) | |
cross_entropy = tf.reduce_mean( | |
tf.nn.softmax_cross_entropy_with_logits(labels=labels, | |
logits=logits)) | |
global_step = tf.train.get_or_create_global_step() | |
boundaries = [100000, 110000] | |
values = [1.0, 0.5, 0.1] | |
learning_rate = tf.train.piecewise_constant_decay(global_step, boundaries, values) | |
train_step = tf.train.GradientDescentOptimizer( | |
learning_rate, name="final_node").minimize(cross_entropy) | |
with tf.control_dependencies([train_step]): | |
return tf.identity(cross_entropy, name="results") | |
x = tf.placeholder(tf.float32, [BATCH_SIZE, FEAT_DIM], name='x') | |
y = tf.placeholder(tf.float32, [BATCH_SIZE, LABELS], name='y') | |
if xla_flag: | |
(xla_loss,) = xla.experimental.compile(model_fn, [x,y]) | |
else: | |
xla_loss = model_fn(x,y) | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
ans = sess.run(xla_loss,feed_dict={x:np.ones((BATCH_SIZE,FEAT_DIM)),y:np.ones((BATCH_SIZE,LABELS))}) | |
print(ans) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment