Created
December 30, 2024 07:00
-
-
Save sanjoy/a491556da8fd77fa13c585581c3fae15 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def softmax_reduction(x, y): | |
e_x = np.exp(x - np.max(x)) | |
softmax = e_x / e_x.sum(axis=0) | |
return (softmax * y).sum() | |
def process_one_element( | |
x, y, online_max, online_output, online_denominator): | |
old_online_max = online_max | |
online_max = max(online_max, x) | |
online_output = ( | |
online_output * np.exp(old_online_max - online_max) + | |
np.exp(x - online_max) * y) | |
online_denominator = ( | |
online_denominator * np.exp(old_online_max - online_max) + | |
np.exp(x - online_max)) | |
return online_max, online_output, online_denominator | |
def softmax_reduction_online(x, y): | |
online_max = float('-inf') | |
online_output = 0.0 | |
online_denominator = 0.0 | |
for xi, yi in zip(x, y): | |
online_max, online_output, online_denominator = process_one_element( | |
xi, yi, online_max, online_output, online_denominator) | |
return online_output / online_denominator | |
def main(): | |
x = np.random.random(128) | |
y = np.random.random(128) | |
result = softmax_reduction(x, y) | |
result_online = softmax_reduction_online(x, y) | |
print(np.allclose(result, result_online)) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment