Last active
November 4, 2020 20:05
Quotes LSTM model - Medium
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def get_batches_x(tot_seq, batch_size): | |
ind = np.random.permutation(tot_seq).tolist() | |
i = 0 | |
for i in range(0, tot_seq, batch_size): | |
batch_ids = ind[i:i+batch_size] | |
yield X[batch_ids], Y[batch_ids] | |
class Quote_Generator(nn.Module): | |
def __init__(self, embed_size, hidden_size, vocab_len): | |
super(Quote_Generator, self).__init__() | |
self.hidden_size = hidden_size | |
self.lstm = nn.LSTM(embed_size, hidden_size, batch_first = True).to(device) | |
self.dropout = nn.Dropout(0.4) | |
self.dense = nn.Linear(hidden_size*5, vocab_len).to(device) | |
def forward(self, x, prev_state): | |
output, state = self.lstm(x) | |
output = self.dropout(output) | |
logits = self.dense(output.reshape(-1, hidden_size*5)) | |
return logits, state | |
def zero_states(self, batch_size): | |
return (torch.zeros(1, batch_size, self.hidden_size).to(device), | |
torch.zeros(1, batch_size, self.hidden_size).to(device)) | |
def entropy_loss(y, y_hat): | |
y_hat = F.softmax(y_hat, dim = 1) | |
ll = - (y * torch.log(y_hat)) | |
return torch.sum(ll, dim = 1).mean().to(device) | |
def qt_train(qt_gen): | |
epochs = 101 | |
batch_size = 4096 | |
losses = [] | |
optimizer = torch.optim.Adam(qt_gen.parameters(), lr=0.001) | |
for epoch in tqdm(range(epochs)): | |
batches = get_batches_x(tot_seq, batch_size) | |
h_h, h_c = qt_gen.zero_states(batch_size) | |
for x,y in batches: | |
qt_gen.train() | |
optimizer.zero_grad() | |
x = torch.tensor(x).float().to(device) | |
y = torch.tensor(y).long().to(device) | |
logits, (h_h, h_c) = qt_gen(x, (h_h, h_c)) | |
loss = entropy_loss(y, logits) | |
h_h.detach() | |
h_c.detach() | |
loss.backward() | |
_ = nn.utils.clip_grad_norm_(qt_gen.parameters(), 5) | |
optimizer.step() | |
losses.append(loss.item()) | |
if (epoch) % 10 == 0: | |
print(f"Epoch : {epoch} ----> Loss : {np.array(losses).mean()}") | |
losses = [] | |
embed_size = 128 | |
hidden_size = 64 | |
qt_gen = Quote_Generator(embed_size, hidden_size, vocab_len).to(device) | |
qt_train(qt_gen) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment