Last active
September 9, 2019 10:30
-
-
Save santiago-salas-v/9b686a190e566c5758a4db96164073b7 to your computer and use it in GitHub Desktop.
backtracking secant method based on: Jr., J. E. Dennis ; Schnabel, Robert B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Philadelphia: SIAM, 1996.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
from numpy import finfo, array, sqrt | |
def y(x): | |
return x**3 + 4 * x**2 - 10 | |
max_it = 100 | |
tol = finfo(float).eps | |
alpha = 1e-4 | |
y_list = [] | |
x_list = [] | |
x_0, x_1, x_2 = 0.5, 0.55, 0.6 | |
# x_0, x_1, x_2 = 0.9, 0.95, 1.0 | |
# p = x_1 - x_0 | |
x_k = x_0 | |
y_k = y(x_k) | |
g_k = 1 / 2 * y_k**2 | |
g_prime_k = - y_k**2 | |
# relative length of p as calculated in the stopping routine | |
# p = -0.1 * x_0 | |
p = (x_1 - x_0) | |
rellength = abs(p / x_k) | |
lambda_min = tol / rellength | |
for j in range(max_it): | |
y_list += [y_k] | |
x_list += [x_k] | |
if abs(y_k) <= tol: | |
break | |
if j == 0: | |
inv_slope = 0.1 / y_k | |
p = -inv_slope * y_k | |
x_k_minus_1 = x_k | |
y_k_minus_1 = y_k | |
g_k_minus_1 = g_k | |
g_prime_k_minus_1 = g_prime_k | |
print(('{:d}:\t x_k: {:0.4f}\ty_k: {:0.4f}' + | |
'\tx_k_minus_1: {:0.4f}' | |
).format(j, x_k, y_k, x_k_minus_1)) | |
else:#if j == 1: | |
inv_slope = (x_k - x_k_minus_1) / (y_k - y_k_minus_1) | |
# x_k_plus_1 = x_k - inv_slope * y_k | |
p = -inv_slope * y_k | |
# x_k_plus_1 = x_2 | |
# p = (x_2 - x_1) | |
print(('{:d}:\t x_k: {:0.4f}\ty_k: {:0.4f}' + | |
'\tx_k_minus_1: {:0.4f}, p: {:0.4f}' | |
).format(j, x_k, y_k, x_k_minus_1, p)) | |
x_k_minus_2 = x_k_minus_1 | |
x_k_minus_1 = x_k | |
y_k_minus_2 = y_k_minus_1 | |
y_k_minus_1 = y_k | |
g_k_minus_1 = g_k | |
g_prime_k_minus_1 = g_prime_k | |
# else: | |
# # x_k_plus_1 = x_k_minus_2 - y_k_minus_2 * ( | |
# # y_k - y_k_minus_1 | |
# # ) / ((y_k - y_k_minus_2) / (x_k - x_k_minus_2) * ( | |
# # y_k - y_k_minus_1) - y_k * ( | |
# # (y_k - y_k_minus_2) / (x_k - x_k_minus_2) - | |
# # (y_k_minus_1 - y_k_minus_2) / (x_k_minus_1 - x_k_minus_2) | |
# # ) | |
# # ) | |
# p = (x_k_minus_2 - x_k) - y_k_minus_2 * ( | |
# y_k - y_k_minus_1 | |
# ) / ((y_k - y_k_minus_2) / (x_k - x_k_minus_2) * ( | |
# y_k - y_k_minus_1) - y_k * ( | |
# (y_k - y_k_minus_2) / (x_k - x_k_minus_2) - | |
# (y_k_minus_1 - y_k_minus_2) / (x_k_minus_1 - x_k_minus_2) | |
# ) | |
# ) | |
# x_k_minus_2 = x_k_minus_1 | |
# x_k_minus_1 = x_k | |
# | |
# y_k_minus_2 = y_k_minus_1 | |
# y_k_minus_1 = y_k | |
# g_k_minus_1 = g_k | |
# g_prime_k_minus_1 = g_prime_k | |
# print(('{:d}:\t x_k: {:0.4f}\ty_k: {:0.4f}'+ | |
# '\tx_k_minus_1: {:0.4f}\tx_k_minus_2: {:0.4f}' | |
# ).format(j, x_k, y_k, x_k_minus_1, x_k_minus_2)) | |
stop = False | |
lambda_ls = 1.0 | |
backtrackcount = 0 | |
g_0 = g_k_minus_1 | |
g_prime_0 = g_prime_k_minus_1 | |
f_0 = y_k_minus_1 | |
while not stop and j + backtrackcount <= max_it: | |
# backtracking, line search - numerical recipes 3ed | |
backtrackcount += 1 | |
if lambda_ls <= lambda_min: | |
# opposite direction | |
p = -p | |
lambda_ls = 1.0 | |
stop = False | |
x_2 = x_k + lambda_ls * p | |
f_2 = y(x_2) | |
g_2 = 1 / 2 * f_2**2 | |
descent = alpha * lambda_ls * g_prime_0 | |
g_max = g_0 + descent | |
satisfactory = g_2 <= g_max | |
stop = satisfactory or lambda_ls <= lambda_min | |
print(('{:d}-{:d}:\t x_2: {:.2g}\ty_2: {:.2g}' + | |
'\tg_0: {:.2g}\tg_2: {:.2g}\tg_max: {:.2g}\tlambda: {:.2g}\t p: {:2g}').format( | |
j, backtrackcount, x_2, f_2, g_0, g_2, g_max, lambda_ls, p)) | |
if not stop: | |
# backtrack - reduce lambda | |
if lambda_ls == 1: | |
# first backtrack quadratic fit | |
lambda_temp = -g_prime_0 / ( | |
2 * (g_2 - g_0 - g_prime_0) | |
) | |
elif lambda_ls < 1: | |
# subsequent backtracks cubic fit | |
a, b = 1 / (lambda_ls - lambda_prev) * array( | |
[[+1 / lambda_ls**2, -1 / lambda_prev**2], | |
[-lambda_prev / lambda_ls**2, | |
+lambda_ls / lambda_prev**2]] | |
).dot(array( | |
[[g_2 - g_0 - g_prime_0 * lambda_ls], | |
[ g_1 - g_0 - g_prime_0 * lambda_prev]] | |
)) | |
a, b = a.item(), b.item() | |
disc = b**2 - 3 * a * g_prime_0 | |
if a == 0: | |
# actually quadratic | |
lambda_temp = - g_prime_0 / (2 * b) | |
else: | |
# legitimate cubic | |
lambda_temp = (-b + sqrt(disc)) / (3 * a) | |
if lambda_temp > 1 / 2 * lambda_ls: | |
lambda_temp = 1 / 2 * lambda_ls | |
lambda_prev = lambda_ls | |
g_1 = g_2 | |
if lambda_temp <= 0.1 * lambda_ls: | |
lambda_ls = 0.1 * lambda_ls | |
else: | |
lambda_ls = lambda_temp | |
x_k_plus_1 = x_2 | |
y_k_plus_1 = f_2 | |
g_k_plus_1 = g_2 | |
x_k = x_k_plus_1 | |
y_k = y_k_plus_1 | |
g_k = g_k_plus_1 | |
g_prime_k = - y_k ** 2 | |
print(('{:d}:\t x_k: {:0.4f}\ty_k: {:0.4f}'+ | |
'\tx_k_minus_1: {:0.4f}\tx_k_minus_2: {:0.4f}' | |
).format(j, x_k, y_k, x_k_minus_1, x_k_minus_2)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment