Created
July 14, 2015 13:44
-
-
Save santiago/5b9bc732dfff9cb87a8b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
Liquid flow rate sensor -DIYhacking.com Arvind Sanjeev | |
Measure the liquid/water flow rate using this code. | |
Connect Vcc and Gnd of sensor to arduino, and the | |
signal line to arduino digital pin 2. | |
*/ | |
byte statusLed = 13; | |
byte sensorInterrupt = 0; // 0 = digital pin 2 | |
byte sensorPin = 2; | |
// The hall-effect flow sensor outputs approximately 4.5 pulses per second per | |
// litre/minute of flow. | |
float calibrationFactor = 4.5; | |
volatile byte pulseCount; | |
float flowRate; | |
unsigned int flowMilliLitres; | |
unsigned long totalMilliLitres; | |
unsigned long oldTime; | |
void setup() | |
{ | |
// Initialize a serial connection for reporting values to the host | |
Serial.begin(38400); | |
// Set up the status LED line as an output | |
pinMode(statusLed, OUTPUT); | |
digitalWrite(statusLed, HIGH); // We have an active-low LED attached | |
pinMode(sensorPin, INPUT); | |
digitalWrite(sensorPin, HIGH); | |
pulseCount = 0; | |
flowRate = 0.0; | |
flowMilliLitres = 0; | |
totalMilliLitres = 0; | |
oldTime = 0; | |
// The Hall-effect sensor is connected to pin 2 which uses interrupt 0. | |
// Configured to trigger on a FALLING state change (transition from HIGH | |
// state to LOW state) | |
attachInterrupt(sensorInterrupt, pulseCounter, FALLING); | |
} | |
/** | |
* Main program loop | |
*/ | |
void loop() | |
{ | |
if((millis() - oldTime) > 1000) // Only process counters once per second | |
{ | |
// Disable the interrupt while calculating flow rate and sending the value to | |
// the host | |
detachInterrupt(sensorInterrupt); | |
// Because this loop may not complete in exactly 1 second intervals we calculate | |
// the number of milliseconds that have passed since the last execution and use | |
// that to scale the output. We also apply the calibrationFactor to scale the output | |
// based on the number of pulses per second per units of measure (litres/minute in | |
// this case) coming from the sensor. | |
flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor; | |
// Note the time this processing pass was executed. Note that because we've | |
// disabled interrupts the millis() function won't actually be incrementing right | |
// at this point, but it will still return the value it was set to just before | |
// interrupts went away. | |
oldTime = millis(); | |
// Divide the flow rate in litres/minute by 60 to determine how many litres have | |
// passed through the sensor in this 1 second interval, then multiply by 1000 to | |
// convert to millilitres. | |
flowMilliLitres = (flowRate / 60) * 1000; | |
// Add the millilitres passed in this second to the cumulative total | |
totalMilliLitres += flowMilliLitres; | |
unsigned int frac; | |
// Print the flow rate for this second in litres / minute | |
Serial.print("Flow rate: "); | |
Serial.print(int(flowRate)); // Print the integer part of the variable | |
Serial.print("."); // Print the decimal point | |
// Determine the fractional part. The 10 multiplier gives us 1 decimal place. | |
frac = (flowRate - int(flowRate)) * 10; | |
Serial.print(frac, DEC) ; // Print the fractional part of the variable | |
Serial.print("L/min"); | |
// Print the number of litres flowed in this second | |
Serial.print(" Current Liquid Flowing: "); // Output separator | |
Serial.print(flowMilliLitres); | |
Serial.print("mL/Sec"); | |
// Print the cumulative total of litres flowed since starting | |
Serial.print(" Output Liquid Quantity: "); // Output separator | |
Serial.print(totalMilliLitres); | |
Serial.println("mL"); | |
// Reset the pulse counter so we can start incrementing again | |
pulseCount = 0; | |
// Enable the interrupt again now that we've finished sending output | |
attachInterrupt(sensorInterrupt, pulseCounter, FALLING); | |
} | |
} | |
/* | |
Insterrupt Service Routine | |
*/ | |
void pulseCounter() | |
{ | |
// Increment the pulse counter | |
pulseCount++; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
El loop se ejecuta si han pasado al menos 1001 milisegundo (1 seg) desde la última pasada. Esto se hace porque el sensor reporta datos cada 1 segundo.
L58:
if((millis() - oldTime) > 1000)
Cuando entra al loop se “cierra” la interrupción de manera que el sensor no reporte más datos durante la ejecución del loop actual.
L62:
detachInterrupt(sensorInterrupt);
Debido a que cuando esto ocurre el arduino detiene el contador de tiempo, --o sea el valor de
millis()
ya no cambia-- la pequeña cantidad de flujo que no se cuenta durante este instante no importa.El sensor envía 4.5 pulsos por segundo por cada litro por minuto de flujo.
L17:
Esto quiere decir q si el flujo es de 1 lt/minuto en un instante(segundo) dado entonces la variable
pulseCount
debe tener el valor de 4.5. Esto es en teoría, en realidad elpulseCount
sólo aumenta de a 1, o sea su valor siempre es un entero, es decir, 1,2,3,4,5 …L119:
pulseCount++
Si por ej. durante el último segundo (o el loop actual) el
pulseCount
tiene un valor de 6.0, eso significa que durante ese “instante” el flujo es de 6.0/4.5 = 1.34 lt/minuto.Es decir:
pulseCount / calibrationFactor
.Como el loop se ejecuta si han transcurrido al menos 1001 milisegundos, entonces debemos ajustar el valor
pulseCount / calibrationFactor
para que se “sincronice” con el segundo actual. Esto se hace dividiendo este valor por el tiempo que tomó el loop, o sea(1000.0 / (millis() - oldTime))
enL69:
flowRate = ((1000.0 / (millis() - oldTime)) * pulseCount) / calibrationFactor;
Se sabe que este valor siempre es mayor que 1001, o sea que la división anterior dará un número menor que 1, sólo un poquito menor que uno, porque seguro que en cada loop el valor de
millis() - oldTime - 1000
es muy pequeño, yo diría q es menor que 10.Al final del loop se “abre” la interrupción de manera que el sensor comience a reportar datos nuevamente.
L109:
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);