Skip to content

Instantly share code, notes, and snippets.

@sany2k8
Last active November 7, 2025 08:45
Show Gist options
  • Save sany2k8/15dbd38dc38598b47d03ebb859d4678c to your computer and use it in GitHub Desktop.
Save sany2k8/15dbd38dc38598b47d03ebb859d4678c to your computer and use it in GitHub Desktop.
A comprehensive Markdown file that documents the end-to-end Big Data ecosystem workflowm, including Hue, Hive, Impala, HDFS, Spark (PySpark), HBase, Iceberg, and file formats (Parquet, ORC).

๐Ÿงญ Big Data Ecosystem Overview

This document explains how the main components of the Hadoop-based Big Data ecosystem connect and work together: Hue, Hive, Impala, HDFS, Spark (PySpark), HBase, Iceberg, Parquet, ORC, Oozie, and Teradata.


๐Ÿงฑ Core Components and Their Roles

Component Type Purpose
HDFS Storage Distributed file system for storing large datasets across cluster nodes.
Hive SQL Engine Batch SQL engine for data warehousing and ETL.
Impala SQL Engine Lowโ€latency, interactive SQL engine for analytics.
Hue Web UI Web-based interface to interact with Hadoop ecosystem tools.
Spark / PySpark Processing Engine Distributed computing engine for data processing, ETL, ML, analytics.
Iceberg Table Format Modern table layer adding ACID transactions, schema evolution, time travel.
HBase NoSQL Database Real-time read/write access to data stored on HDFS.
Parquet / ORC File Formats Columnar storage formats optimized for big data analytics.
Oozie Workflow Scheduler Orchestrates and schedules Hadoop ecosystem jobs (Hive, Spark, etc.).
Teradata Enterprise Data Warehouse MPP SQL data warehouse for large-scale structured analytics.

๐Ÿ”— Ecosystem Architecture Flow

                โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                โ”‚        Hue         โ”‚
                โ”‚ (Web UI for Hadoop)โ”‚
                โ”‚ - Run Hive/Impala  โ”‚
                โ”‚ - Browse HDFS/HBaseโ”‚
                โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                          โ”‚
          โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
          โ”‚                                   โ”‚
  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                 โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
  โ”‚      Hive        โ”‚                โ”‚     Impala       โ”‚
  โ”‚ (Batch SQL Engine)โ”‚               โ”‚ (Fast SQL Engine)โ”‚
  โ”‚ - ETL / Warehousingโ”‚              โ”‚ - Interactive BI โ”‚
  โ”‚ - Works with Oozie โ”‚              โ”‚                  โ”‚
  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                 โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
           โ”‚                                     โ”‚
           โ”‚ (Both use the same Hive Metastore)  โ”‚
           โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                            โ”‚
                     โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                     โ”‚   Iceberg    โ”‚
                     โ”‚ Modern Table โ”‚
                     โ”‚   Format     โ”‚
                     โ”‚ (ACID, schemaโ”‚
                     โ”‚ evolution)   โ”‚
                     โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                            โ”‚
                    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                    โ”‚     HDFS       โ”‚
                    โ”‚ (Data Storage) โ”‚
                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                            โ”‚
        โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
        โ”‚                                           โ”‚
 โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                             โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
 โ”‚   PySpark     โ”‚                             โ”‚     HBase        โ”‚
 โ”‚ (Compute / ETL)โ”‚                            โ”‚ (NoSQL, Real-time)โ”‚
 โ”‚ - Reads/Writes โ”‚                            โ”‚ - Random R/W      โ”‚
 โ”‚   to HDFS/Iceberg/Hive                     โ”‚ - Built on HDFS   โ”‚
 โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                             โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                                       โ”‚
                                       โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                                       โ”‚        Teradata             โ”‚
                                       โ”‚ Enterprise Data Warehouse   โ”‚
                                       โ”‚ (Structured large-scale SQL)โ”‚
                                       โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜


๐Ÿ“‚ Data Storage Layer โ€” HDFS

HDFS (Hadoop Distributed File System) is the foundation where all raw and processed data is stored.

  • Stores data as blocks across cluster nodes.
  • Provides fault tolerance and high throughput.
  • Other components (Hive, Impala, Spark, HBase) read/write from it.

๐Ÿงฎ Data Processing and Query Engines

๐Ÿ Hive

  • SQL interface for data stored in HDFS.
  • Converts queries into MapReduce / Tez / Spark jobs for batch processing.
  • Ideal for ETL and large-scale aggregations.
  • Defines table metadata in the Hive Metastore.

โšก Impala

  • Real-time SQL query engine.
  • Reads the same tables defined in Hive Metastore.
  • Executes queries directly in memory for low-latency analytics.
  • Best for BI dashboards and interactive analysis.

๐Ÿ”ฅ Spark / PySpark

  • Distributed computation engine for batch, streaming, and ML.

  • PySpark provides a Python API for Spark.

  • Can read/write from:

    • HDFS
    • Hive tables
    • Iceberg tables
    • Parquet/ORC files
  • Often used for ETL, data transformation, or feature engineering.

๐Ÿ•’ Oozie

  • Orchestrates complex workflows and schedules recurring jobs in the Hadoop ecosystem.
  • Coordinates jobs such as Hive scripts, Spark jobs, shell commands, HDFS actions.
  • Enables dependency management, error-handling, and scheduling (time or data triggers).

๐ŸงŠ Iceberg โ€” Modern Table Format

Apache Iceberg improves upon Hiveโ€™s traditional table format.

โœ… Features:

  • ACID transactions
  • Schema evolution (add/remove columns safely)
  • Hidden partitioning
  • Time travel (query older snapshots)

Integration:

  • Stored on HDFS or cloud storage.
  • Accessible via Hive, Spark, Impala, Presto, etc.

๐Ÿ—‚ File Formats โ€” Parquet vs ORC

Feature Parquet ORC
Type Columnar Columnar
Developed By Twitter & Cloudera Hortonworks
Optimized For Spark, Impala, Iceberg Hive, Spark
Compression Snappy, GZIP, LZO, ZSTD ZLIB, Snappy
Read Performance Excellent for Spark & Impala Excellent for Hive
Write Performance Faster Slower, but better compression
Metadata Stored per column chunk Rich stats per stripe (min/max, bloom filters)
File Extension .parquet .orc

Example:

# PySpark Example
df = spark.read.csv("data.csv", header=True)
df.write.parquet("data_parquet/")
df.write.orc("data_orc/")

๐Ÿงฐ HBase โ€” NoSQL Real-time Store

  • Built on HDFS but optimized for random read/write.

  • Schema-flexible: stores data as key-value pairs.

  • Suitable for:

    • IoT sensor data
    • Time-series logs
    • Real-time lookup tables
  • Accessible via:

    • APIs (Java, Python, REST)
    • Apache Phoenix for SQL queries
    • Hue HBase Browser

๐Ÿข Teradata โ€” Enterprise Data Warehouse

  • Highly scalable MPP (Massively Parallel Processing) SQL data warehouse for large-scale structured analytics.

  • Often used as the enterprise โ€œsingle source of truthโ€ for curated, cleaned data.

  • Works alongside Hadoop ecosystems:

    • Raw data processed in Hadoop โ†’ summaries/load to Teradata
    • BI tools connect to Teradata for stable reporting.
  • Architecture highlights:

    • Shared-nothing architecture
    • Parsing Engine (PE) for SQL queries
    • AMP (Access Module Processor) nodes for parallel data processing
    • BYNET network for high-speed inter-node communication

๐Ÿ–ฅ๏ธ Hue โ€” The User Interface Layer

Hue (Hadoop User Experience) provides a web-based UI for:

  • Writing and running Hive or Impala SQL queries.
  • Browsing and managing HDFS files.
  • Viewing HBase tables.
  • Managing Spark jobs and workflows (including Oozie workflows).

โš™๏ธ Example End-to-End Workflow

  1. Data lands in HDFS from logs or ingestion.
  2. Oozie triggers jobs (e.g., nightly at 02:00).
  3. PySpark cleans and transforms the data, writes output to Iceberg/Hive tables.
  4. Results are stored in Parquet or ORC format.
  5. Hive runs scheduled ETL aggregations.
  6. Impala enables interactive analytics on that data.
  7. Teradata receives curated, structured data for enterprise reporting.
  8. HBase serves real-time data lookups or time-series.
  9. Hue is used by analysts/engineers to run queries, monitor jobs, browse data, and visualize results.

๐Ÿš€ Summary

Layer Technology Role
UI Hue Web-based UI for querying and data exploration
Schedule Oozie Orchestrates and schedules workflows in Hadoop
SQL Engines Hive / Impala Batch and interactive SQL processing
Processing Spark / PySpark Distributed data processing & ETL
Storage Format Iceberg Table management with ACID and schema evolution
File Formats Parquet / ORC Compressed columnar storage for analytics
Storage HDFS Distributed, fault-tolerant storage layer
NoSQL HBase Real-time read/write data store
DW Teradata Enterprise data warehouse for large-scale SQL analytics

๐Ÿง  Quick Summary in One Line

HDFS stores โ†’ Iceberg/Hive organize โ†’ Impala/Hive analyze โ†’ PySpark processes โ†’ HBase serves realโ€time โ†’ Teradata warehouses curated data โ†’ Oozie orchestrates the jobs โ†’ Hue visualizes and manages it all.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment