Created
October 30, 2020 16:05
-
-
Save saswata-dutta/10c87f9afe5f941c66a70a4ab9d7455e to your computer and use it in GitHub Desktop.
spark data cleaning
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import org.apache.spark.sql.types._ | |
import org.apache.spark.sql.functions.udf | |
import org.apache.spark.sql.expressions.UserDefinedFunction | |
import org.apache.spark.sql.DataFrame | |
val schema = StructType(Array( | |
StructField("ID", LongType, false), | |
StructField("ASIN", StringType, false), | |
StructField("ASIN_STATIC_ITEM_NAME", StringType, false), | |
StructField("ASIN_STATIC_PRODUCT_DESCRIPTION", StringType, false), | |
StructField("ASIN_STATIC_BULLET_POINT", StringType, false), | |
StructField("ASIN_STATIC_BRAND", StringType, false), | |
StructField("ASIN_STATIC_MANUFACTURER", StringType, false), | |
StructField("browse_node_id", DoubleType, false) | |
)) | |
val stopWords = Set("i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "you're", "you've", "you'll", "you'd", "your", "yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", "she's", "her", "hers", "herself", "it", "it's", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "that'll", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", "t", "can", "will", "just", "don", "don't", "should", "should've", "now", "d", "ll", "m", "o", "re", "ve", "y", "ain", "aren", "aren't", "couldn", "couldn't", "didn", "didn't", "doesn", "doesn't", "hadn", "hadn't", "hasn", "hasn't", "haven", "haven't", "isn", "isn't", "ma", "mightn", "mightn't", "mustn", "mustn't", "needn", "needn't", "shan", "shan't", "shouldn", "shouldn't", "wasn", "wasn't", "weren", "weren't", "won", "won't", "wouldn", "wouldn't") | |
val strSanitiserFn: String => String = (str: String) => Option(str).fold("")(it => { | |
val removedHtml = it.replaceAll("<[^>]*?>", "").replaceAll(""|&|<|>", "") | |
val words = removedHtml.toLowerCase.split("[^a-z0-9]") | |
words.filter(_.nonEmpty).mkString(" ") | |
}) | |
val strSanitiser: UserDefinedFunction = udf[String, String](strSanitiserFn) | |
val conceptWords: UserDefinedFunction = udf[String, String]((str: String) => { | |
str.split(" ").filterNot(stopWords).mkString(" ") | |
}) | |
val wordCount: UserDefinedFunction = udf[Int, String]((str: String) => str.split(" ").size) | |
val uniqWordCount: UserDefinedFunction = udf[Int, String]((str: String) => str.split(" ").toSet.size) | |
val stopWordCount: UserDefinedFunction = udf[Int, String]((str: String) => str.split(" ").filter(stopWords).size) | |
val meanWordLen: UserDefinedFunction = udf[Double, String]((str: String) => { | |
str.split(" ").map(_.size). | |
foldLeft((0.0, 1)) { case ((avg, idx), next) => (avg + (next - avg)/idx, idx + 1) }._1 | |
}) | |
val charCount: UserDefinedFunction = udf[Int, String]((str: String) => { | |
str.split(" ").map(_.size).foldLeft(0)((acc, el) => acc + el) | |
}) | |
val urlCount: UserDefinedFunction = udf[Int, String]((str: String) => { | |
val urlPat = "https?://".r | |
urlPat.findAllIn(str).size | |
}) | |
def processColumn(colName: String)(df: DataFrame): DataFrame = { | |
val cleanColName = s"${colName}_CLEAN" | |
df. | |
withColumn(cleanColName, strSanitiser(col(colName))). | |
withColumn(s"${colName}_CONCEPT_WORDS", conceptWords(col(cleanColName))). | |
withColumn(s"${colName}_WORD_COUNT", wordCount(col(cleanColName))). | |
withColumn(s"${colName}_UNIQ_WORD_COUNT", uniqWordCount(col(cleanColName))). | |
withColumn(s"${colName}_STOP_WORD_COUNT", stopWordCount(col(cleanColName))). | |
withColumn(s"${colName}_URL_COUNT", urlCount(col(cleanColName))). | |
withColumn(s"${colName}_MEAN_WORD_LEN", meanWordLen(col(cleanColName))). | |
withColumn(s"${colName}CHAR_COUNT", charCount(col(cleanColName))). | |
drop(colName) | |
} | |
val df = spark.read.schema(schema). | |
option("header", true). | |
option("mode", "DROPMALFORMED"). | |
csv("train_sample_unescaped_8.csv") | |
val cleanDf = df. | |
withColumn("browse_node_id_long", col("browse_node_id").cast(LongType)). | |
filter(col("browse_node_id_long").isNotNull). | |
transform(processColumn("ASIN_STATIC_ITEM_NAME")). | |
transform(processColumn("ASIN_STATIC_BRAND")). | |
transform(processColumn("ASIN_STATIC_MANUFACTURER")). | |
transform(processColumn("ASIN_STATIC_PRODUCT_DESCRIPTION")). | |
transform(processColumn("ASIN_STATIC_BULLET_POINT")) | |
cleanDf.coalesce(1).write.parquet("cleaned") | |
cleanDf.write.parquet("cleaned_pq") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment