Created
April 17, 2021 06:36
-
-
Save saswata-dutta/9ff658510ceb791370feea731b8810b2 to your computer and use it in GitHub Desktop.
averages across multiple dimensions
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
Inner_Collapsingkey - Outer_GroupingKey = Implicit_ObservationKey | |
collapsingKey == primaryKey(default) | |
what is the average daily amount of items sold for each employee ? | |
Inner_Collapsingkey = (day, employee) => what we want to define as an observation for this analysis | |
Outer_GroupingKey = employee => key defining the required groups to report | |
Implicit_ObservationKey = day => defines count of rows for the denom in avg | |
*/ | |
import spark.implicits._ | |
val sales = Seq( | |
("Monday", "Mary", 5), | |
("Monday", "Bob", 4), | |
("Tuesday", "Bob", 8), | |
("Thursday", "Jane", 10), | |
("Thursday", "Jane", 6) | |
).toDF("day", "employee", "items_sold") | |
sales.createOrReplaceTempView("sales") | |
spark.sql("select * from sales").show() | |
/* | |
+--------+--------+---------+ | |
| day|employee|ItemsSold| | |
+--------+--------+---------+ | |
| Monday| Mary| 5| | |
| Monday| Bob| 4| | |
| Tuesday| Bob| 8| | |
|Thursday| Jane| 10| | |
|Thursday| Jane| 6| | |
+--------+--------+---------+ | |
*/ | |
spark.sql(""" | |
select employee, avg(total_items_sold) | |
from ( | |
select day, employee, sum(items_sold) as total_items_sold | |
from sales | |
group by day, employee | |
) group by employee | |
""").show() | |
/* | |
+--------+---------------------+ | |
|employee|avg(total_items_sold)| | |
+--------+---------------------+ | |
| Mary| 5.0| | |
| Bob| 6.0| | |
| Jane| 16.0| | |
+--------+---------------------+ | |
*/ | |
sales.groupBy("day", "employee").agg(sum("items_sold").as("total_items_sold")).show() | |
/* | |
+--------+--------+----------------+ | |
| day|employee|total_items_sold| | |
+--------+--------+----------------+ | |
| Tuesday| Bob| 8| | |
| Monday| Mary| 5| | |
| Monday| Bob| 4| | |
|Thursday| Jane| 16| | |
+--------+--------+----------------+ | |
*/ | |
sales.groupBy("day", "employee").agg(sum("items_sold").as("total_items_sold")).groupBy("employee").avg("total_items_sold").show() | |
/* | |
+--------+---------------------+ | |
|employee|avg(total_items_sold)| | |
+--------+---------------------+ | |
| Mary| 5.0| | |
| Bob| 6.0| | |
| Jane| 16.0| | |
+--------+---------------------+ | |
*/ | |
sales.groupBy("day", "employee").sum("items_sold").groupBy("employee").avg("sum(items_sold)").show() | |
/* | |
+--------+--------------------+ | |
|employee|avg(sum(items_sold))| | |
+--------+--------------------+ | |
| Mary| 5.0| | |
| Bob| 6.0| | |
| Jane| 16.0| | |
+--------+--------------------+ | |
*/ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment