Skip to content

Instantly share code, notes, and snippets.

@sato-cloudian
Last active December 30, 2015 23:43
Show Gist options
  • Save sato-cloudian/b26fe51d06380204df68 to your computer and use it in GitHub Desktop.
Save sato-cloudian/b26fe51d06380204df68 to your computer and use it in GitHub Desktop.
MyCNNMnistExample experiment 6
package org.deeplearning4j.examples.convolution;
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.GradientNormalization;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.Updater;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.conf.layers.setup.ConvolutionLayerSetup;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.api.IterationListener;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.deeplearning4j.ui.weights.HistogramIterationListener;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.SplitTestAndTrain;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.*;
/**
* Created by willow on 5/11/15.
*/
public class MyCNNMnistExample {
private static final Logger log = LoggerFactory.getLogger(MyCNNMnistExample.class);
public static void main(String[] args) throws Exception {
int numRows = 28;
int numColumns = 28;
int nChannels = 1;
int outputNum = 10;
int numSamples = 60000;
int batchSize = 100;
int iterations = 1;
int splitTrainNum = (int) (batchSize*.8);
int seed = 123;
int listenerFreq = Math.max(iterations/10, 1);
DataSet mnist;
SplitTestAndTrain trainTest;
DataSet trainInput;
List<INDArray> testInput = new ArrayList<>();
List<INDArray> testLabels = new ArrayList<>();
log.info("Load data....");
DataSetIterator mnistIter = new MnistDataSetIterator(batchSize,numSamples, true);
log.info("Build model....");
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(iterations)
//.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.learningRate(0.001) // default
//.learningRateAfter(Collections.singletonMap(3, 0.001))
//.momentum(0.99)
//.momentumAfter(Collections.singletonMap(3, 0.9))
.regularization(true)
.list(8)
.layer(0, new ConvolutionLayer.Builder(3, 3) // 28*28*1 => 28*28*8
.nIn(nChannels)
.nOut(8)
.padding(1, 1)
.stride(1, 1)
.weightInit(WeightInit.RELU)
.activation("relu")
.build())
.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {2,2}) // 28*28*8 => 14*14*8
.stride(2, 2)
.build())
.layer(2, new ConvolutionLayer.Builder(3, 3) // 14*14*8 => 14*14*16
.nIn(8)
.nOut(16)
.padding(1, 1)
.stride(1, 1)
.weightInit(WeightInit.RELU)
.activation("relu")
.build())
.layer(3, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {2,2}) // 14*14*16 => 7*7*16
.stride(2, 2)
.build())
.layer(4, new ConvolutionLayer.Builder(3, 3) // 7*7*16 => 7*7*32
.nIn(16)
.nOut(32)
.padding(1, 1)
.stride(1, 1)
.weightInit(WeightInit.RELU)
.activation("relu")
.build())
.layer(5, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {3,3}) // 7*7*32 => 3*3*32
.stride(2, 2)
.build())
.layer(6, new DenseLayer.Builder().activation("relu")
.nOut(128).build())
.layer(7, new OutputLayer.Builder(LossFunctions.LossFunction.RMSE_XENT)
.nOut(outputNum)
.weightInit(WeightInit.RELU)
.activation("softmax")
.updater(Updater.SGD)
.build())
.backprop(true).pretrain(false);
new ConvolutionLayerSetup(builder,numRows,numColumns,nChannels);
MultiLayerConfiguration conf = builder.build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
log.info("Train model....");
model.setListeners(Arrays.asList((IterationListener) new ScoreIterationListener(listenerFreq), new HistogramIterationListener(listenerFreq)));
while(mnistIter.hasNext()) {
mnist = mnistIter.next();
trainTest = mnist.splitTestAndTrain(splitTrainNum, new Random(seed)); // train set that is the result
trainInput = trainTest.getTrain(); // get feature matrix and labels for training
testInput.add(trainTest.getTest().getFeatureMatrix());
testLabels.add(trainTest.getTest().getLabels());
model.fit(trainInput);
}
log.info("Evaluate weights....");
log.info("Evaluate model....");
Evaluation eval = new Evaluation(outputNum);
for(int i = 0; i < testInput.size(); i++) {
INDArray output = model.output(testInput.get(i));
eval.eval(testLabels.get(i), output);
}
INDArray output = model.output(testInput.get(0));
eval.eval(testLabels.get(0), output);
log.info(eval.stats());
log.info("****************Example finished********************");
}
}
==========================Scores========================================
Accuracy: 0.6533
Precision: 0.7141
Recall: 0.6511
F1 Score: 0.6811200949418075
===========================================================================
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment