Skip to content

Instantly share code, notes, and snippets.

@sato-cloudian
Created May 18, 2016 15:10
Show Gist options
  • Save sato-cloudian/f847aef1c75528c9b41a213832a26306 to your computer and use it in GitHub Desktop.
Save sato-cloudian/f847aef1c75528c9b41a213832a26306 to your computer and use it in GitHub Desktop.
intelcaffe + MKL2017
name: "cars_finegrained_nin"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: false
crop_size: 248
mean_file: "/home/tsato/Desktop/intelcaffe/data/cars/grey_cars_mean.binaryproto"
}
data_param {
source: "/home/tsato/Desktop/intelcaffe/data/cars/train_finegrained_over_100.db"
batch_size: 256
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 248
mean_file: "/home/tsato/Desktop/intelcaffe/data/cars/grey_cars_mean.binaryproto"
}
data_param {
source: "/home/tsato/Desktop/intelcaffe/data/cars/val_finegrained_over_100.db"
batch_size: 256
backend: LMDB
}
}
layer {
bottom: "data"
top: "conv1"
name: "conv1"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 32
stride: 4
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "conv1"
top: "conv1"
name: "relu0"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "conv1"
top: "cccp1"
name: "cccp1"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 1
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "cccp1"
top: "cccp1"
name: "relu1"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "cccp1"
top: "cccp2"
name: "cccp2"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 1
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "cccp2"
top: "cccp2"
name: "relu2"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "cccp2"
top: "pool0"
name: "pool0"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
engine: MKL2017
}
}
layer {
bottom: "pool0"
top: "conv2"
name: "conv2"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "conv2"
top: "conv2"
name: "relu3"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "conv2"
top: "cccp3"
name: "cccp3"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
kernel_size: 1
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "cccp3"
top: "cccp3"
name: "relu5"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "cccp3"
top: "cccp4"
name: "cccp4"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
kernel_size: 1
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "cccp4"
top: "cccp4"
name: "relu6"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "cccp4"
top: "pool2"
name: "pool2"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
engine: MKL2017
}
}
layer {
bottom: "pool2"
top: "conv3"
name: "conv3"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "conv3"
top: "conv3"
name: "relu7"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "conv3"
top: "cccp5"
name: "cccp5"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
kernel_size: 1
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "cccp5"
top: "cccp5"
name: "relu8"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "cccp5"
top: "cccp6"
name: "cccp6"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
kernel_size: 1
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "cccp6"
top: "cccp6"
name: "relu9"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "cccp6"
top: "pool3"
name: "pool3"
type: "Pooling"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
engine: MKL2017
}
}
layer {
bottom: "pool3"
top: "pool3"
name: "drop"
type: "Dropout"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
bottom: "pool3"
top: "conv4"
name: "conv4-337"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 337
pad: 1
kernel_size: 3
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "conv4"
top: "conv4"
name: "relu10"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "conv4"
top: "cccp7"
name: "cccp7-337"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 337
kernel_size: 1
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.05
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "cccp7"
top: "cccp7"
name: "relu11"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "cccp7"
top: "cccp8"
name: "cccp8-337"
type: "Convolution"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 337
kernel_size: 1
stride: 1
engine: MKL2017
weight_filler {
type: "gaussian"
mean: 0
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "cccp8"
top: "cccp8"
name: "relu12"
type: "ReLU"
relu_param {
engine: MKL2017
}
}
layer {
bottom: "cccp8"
top: "pool4"
name: "pool4"
type: "Pooling"
pooling_param {
pool: AVE
kernel_size: 6
stride: 1
engine: MKL2017
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "pool4"
bottom: "label"
top: "accuracy"
accuracy_param {
top_k: 1
}
include: { phase: TEST }
}
layer {
name: "accuracy3"
type: "Accuracy"
bottom: "pool4"
bottom: "label"
top: "accuracy3"
accuracy_param {
top_k: 3
}
include: { phase: TEST }
}
layer {
bottom: "pool4"
bottom: "label"
name: "loss"
type: "SoftmaxWithLoss"
include: { phase: TRAIN }
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment