Created
May 18, 2016 15:10
-
-
Save sato-cloudian/f847aef1c75528c9b41a213832a26306 to your computer and use it in GitHub Desktop.
intelcaffe + MKL2017
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "cars_finegrained_nin" | |
layer { | |
name: "data" | |
type: "Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
mirror: false | |
crop_size: 248 | |
mean_file: "/home/tsato/Desktop/intelcaffe/data/cars/grey_cars_mean.binaryproto" | |
} | |
data_param { | |
source: "/home/tsato/Desktop/intelcaffe/data/cars/train_finegrained_over_100.db" | |
batch_size: 256 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "data" | |
type: "Data" | |
top: "data" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
transform_param { | |
mirror: false | |
crop_size: 248 | |
mean_file: "/home/tsato/Desktop/intelcaffe/data/cars/grey_cars_mean.binaryproto" | |
} | |
data_param { | |
source: "/home/tsato/Desktop/intelcaffe/data/cars/val_finegrained_over_100.db" | |
batch_size: 256 | |
backend: LMDB | |
} | |
} | |
layer { | |
bottom: "data" | |
top: "conv1" | |
name: "conv1" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 96 | |
kernel_size: 32 | |
stride: 4 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv1" | |
top: "conv1" | |
name: "relu0" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "conv1" | |
top: "cccp1" | |
name: "cccp1" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 96 | |
kernel_size: 1 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "cccp1" | |
top: "cccp1" | |
name: "relu1" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "cccp1" | |
top: "cccp2" | |
name: "cccp2" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 96 | |
kernel_size: 1 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "cccp2" | |
top: "cccp2" | |
name: "relu2" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "cccp2" | |
top: "pool0" | |
name: "pool0" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "pool0" | |
top: "conv2" | |
name: "conv2" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 2 | |
kernel_size: 5 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv2" | |
top: "conv2" | |
name: "relu3" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "conv2" | |
top: "cccp3" | |
name: "cccp3" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "cccp3" | |
top: "cccp3" | |
name: "relu5" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "cccp3" | |
top: "cccp4" | |
name: "cccp4" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "cccp4" | |
top: "cccp4" | |
name: "relu6" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "cccp4" | |
top: "pool2" | |
name: "pool2" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "pool2" | |
top: "conv3" | |
name: "conv3" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 384 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv3" | |
top: "conv3" | |
name: "relu7" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "conv3" | |
top: "cccp5" | |
name: "cccp5" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 384 | |
kernel_size: 1 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "cccp5" | |
top: "cccp5" | |
name: "relu8" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "cccp5" | |
top: "cccp6" | |
name: "cccp6" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 384 | |
kernel_size: 1 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "cccp6" | |
top: "cccp6" | |
name: "relu9" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "cccp6" | |
top: "pool3" | |
name: "pool3" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "pool3" | |
top: "pool3" | |
name: "drop" | |
type: "Dropout" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
bottom: "pool3" | |
top: "conv4" | |
name: "conv4-337" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 337 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv4" | |
top: "conv4" | |
name: "relu10" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "conv4" | |
top: "cccp7" | |
name: "cccp7-337" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 337 | |
kernel_size: 1 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.05 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "cccp7" | |
top: "cccp7" | |
name: "relu11" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "cccp7" | |
top: "cccp8" | |
name: "cccp8-337" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 337 | |
kernel_size: 1 | |
stride: 1 | |
engine: MKL2017 | |
weight_filler { | |
type: "gaussian" | |
mean: 0 | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "cccp8" | |
top: "cccp8" | |
name: "relu12" | |
type: "ReLU" | |
relu_param { | |
engine: MKL2017 | |
} | |
} | |
layer { | |
bottom: "cccp8" | |
top: "pool4" | |
name: "pool4" | |
type: "Pooling" | |
pooling_param { | |
pool: AVE | |
kernel_size: 6 | |
stride: 1 | |
engine: MKL2017 | |
} | |
} | |
layer { | |
name: "accuracy" | |
type: "Accuracy" | |
bottom: "pool4" | |
bottom: "label" | |
top: "accuracy" | |
accuracy_param { | |
top_k: 1 | |
} | |
include: { phase: TEST } | |
} | |
layer { | |
name: "accuracy3" | |
type: "Accuracy" | |
bottom: "pool4" | |
bottom: "label" | |
top: "accuracy3" | |
accuracy_param { | |
top_k: 3 | |
} | |
include: { phase: TEST } | |
} | |
layer { | |
bottom: "pool4" | |
bottom: "label" | |
name: "loss" | |
type: "SoftmaxWithLoss" | |
include: { phase: TRAIN } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment