Inspired by dannyfritz/commit-message-emoji
See also gitmoji.
| Commit type | Emoji |
|---|---|
| Initial commit | 🎉 :tada: |
| Version tag | 🔖 :bookmark: |
| New feature | ✨ :sparkles: |
| Bugfix | 🐛 :bug: |
| import boto3 | |
| from PIL import Image | |
| from io import BytesIO | |
| import os | |
| class S3ImagesInvalidExtension(Exception): | |
| pass | |
| class S3ImagesUploadFailed(Exception): | |
| pass |
| import warnings | |
| from skimage.measure import compare_ssim | |
| from skimage.transform import resize | |
| from scipy.stats import wasserstein_distance | |
| from scipy.misc import imsave | |
| from scipy.ndimage import imread | |
| import numpy as np | |
| import cv2 | |
| ## |
| from __future__ import print_function | |
| import requests | |
| import json | |
| import cv2 | |
| addr = 'http://localhost:5000' | |
| test_url = addr + '/api/test' | |
| # prepare headers for http request | |
| content_type = 'image/jpeg' |
| '''This script goes along the blog post | |
| "Building powerful image classification models using very little data" | |
| from blog.keras.io. | |
| It uses data that can be downloaded at: | |
| https://www.kaggle.com/c/dogs-vs-cats/data | |
| In our setup, we: | |
| - created a data/ folder | |
| - created train/ and validation/ subfolders inside data/ | |
| - created cats/ and dogs/ subfolders inside train/ and validation/ | |
| - put the cat pictures index 0-999 in data/train/cats |
| # db/migrate/filename.rb | |
| # generate with >> rails g model image alt:string hint:string file:string | |
| class CreateImages < ActiveRecord::Migration[5.0] | |
| def change | |
| create_table :images do |t| | |
| t.string :alt | |
| t.string :hint | |
| t.string :file |
Inspired by dannyfritz/commit-message-emoji
See also gitmoji.
| Commit type | Emoji |
|---|---|
| Initial commit | 🎉 :tada: |
| Version tag | 🔖 :bookmark: |
| New feature | ✨ :sparkles: |
| Bugfix | 🐛 :bug: |
| BOOST_INC_DIR = [] | |
| BOOST_LIB_DIR = [] | |
| BOOST_COMPILER = 'gcc43' | |
| USE_SHIPPED_BOOST = True | |
| BOOST_PYTHON_LIBNAME = ['boost_python-py27'] | |
| BOOST_THREAD_LIBNAME = ['boost_thread'] | |
| CUDA_TRACE = False | |
| CUDA_ROOT = '/usr/local/cuda' | |
| CUDA_ENABLE_GL = False | |
| CUDA_ENABLE_CURAND = True |
| """ Example using GenSim's LDA and sklearn. """ | |
| import numpy as np | |
| from gensim import matutils | |
| from gensim.models.ldamodel import LdaModel | |
| from sklearn import linear_model | |
| from sklearn.datasets import fetch_20newsgroups | |
| from sklearn.feature_extraction.text import CountVectorizer |
| from Crypto.Cipher import AES | |
| from Crypto import Random | |
| BS = 16 | |
| pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS) | |
| unpad = lambda s : s[0:-ord(s[-1])] | |
| class AESCipher: | |
| def __init__( self, key ): | |
| """ |