Created
May 15, 2019 13:52
-
-
Save satr/1a2cb1ac5d75c0aec03e53240730c299 to your computer and use it in GitHub Desktop.
Usage of TensorFlow callbacks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from tensorflow import keras | |
mnist = keras.datasets.mnist | |
(training_images, training_labels), (test_images, test_labels) = mnist.load_data() | |
#plt.imshow(test_images[0]) | |
class FitCallback(tf.keras.callbacks.Callback): | |
def on_epoch_end(self, epoch, logs={}): | |
accuracy = 0.9 | |
if logs.get('acc') > accuracy: | |
print("\nReached {:f}% accuracy - cancelling training.".format(accuracy * 100.0)) | |
self.model.stop_training = True | |
callbacks = FitCallback() | |
training_images = training_images / 255.0 | |
test_images = test_images / 255.0 | |
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28,28)), #images 28x28 | |
tf.keras.layers.Dense(512, activation=tf.nn.relu), #512 neurones | |
tf.keras.layers.Dense(10, activation=tf.nn.softmax)]) #10 classes | |
model.compile(optimizer=tf.train.AdamOptimizer(), loss='sparse_categorical_crossentropy', metrics=['accuracy']) | |
#model.fit(training_images, training_labels, epochs=5) #instad of specifying amount of epochs - use callbacks with accuracy level | |
model.fit(training_images, training_labels, callbacks=[callbacks]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment