Created
February 25, 2014 01:58
-
-
Save satra/9201214 to your computer and use it in GitHub Desktop.
variance laplacians
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def _laplacian_dense2(graph, normalization=None, return_diag=False, | |
max_iters=100, tol=1e-5): | |
"""Compute different graph Laplacians | |
""" | |
dd = np.sum(graph, axis=0) | |
dd_idx = np.nonzero(dd)[0] | |
dd_inv = dd | |
dd_inv[dd_idx] = np.power(dd_inv[dd_idx], -1.) | |
if normalization == 'bimarkov': | |
# BIMARKOV computes the bimarkov normalization function p(x) for the | |
# nonnegative, symemtric kernel K(x,y) using an iterative scheme. The | |
# function p(x) is the unique function s.t. | |
# | |
# diag(1./sqrt(p)*K*diag(1./sqrt(p)) | |
# | |
# is both row and column stochastic. Note that a bimarkov kernel | |
# necessarily has L^2 norm 1. | |
# initialize output | |
lap = graph.copy() | |
N = graph.shape[0] | |
dd = np.ones(N) # bimarkov normalization function | |
for i in range(max_iters): | |
S = np.sum(lap, axis=1) | |
err = max(abs(1-max(S)), abs(1-min(S))) | |
if err < tol: | |
break | |
dd = S * dd | |
lap = _laplacian_dense2(lap, normalization='sym_markov') | |
if normalization == 'sym_markov': | |
D = np.diag(np.sqrt(dd_inv)) | |
lap = D.dot(graph.dot(D)) | |
lap = (lap.T + lap)/2 # iron out numerical wrinkles | |
if normalization == 'markov': | |
lap = np.diag(dd_inv).dot(graph) | |
if normalization == 'sym_beltrami': | |
D = np.diag(dd_inv) | |
K = D.dot(graph.dot(D)) | |
lap = _laplacian_dense2(K, normalization='sym_markov') | |
if normalization == 'beltrami': | |
D = np.diag(dd_inv) | |
K = D.dot(graph.dot(D)) | |
lap = _laplacian_dense2(K, normalization='markov') | |
if normalization == 'sym_fokker_planck': | |
D = np.diag(np.sqrt(dd_inv)) | |
K = D.dot(graph.dot(D)) | |
lap = _laplacian_dense2(K, normalization='sym_markov') | |
if normalization == 'fokker_planck': | |
D = np.diag(np.sqrt(dd_inv)) | |
K = D.dot(graph.dot(D)) | |
lap = _laplacian_dense2(K, normalization='markov') | |
if return_diag: | |
return lap, dd | |
return lap |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment