Created
May 19, 2018 20:06
-
-
Save satra/ca140fe2cb41659b1b9666909df19cf4 to your computer and use it in GitHub Desktop.
Apply ANTs Jointfusion using Mindboggle atlases
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
docker run -it --rm kaczmarj/neurodocker:master generate docker \ | |
--base neurodebian:stretch \ | |
--pkg-manager apt \ | |
--install graphviz tree git-annex-standalone vim \ | |
emacs-nox nano less ncdu tig sed build-essential \ | |
libsm-dev libx11-dev libxt-dev libxext-dev libglu1-mesa \ | |
--freesurfer version=6.0.0-min \ | |
--ants version=b43df4bfc8 method=source cmake_opts='-DBUILD_SHARED_LIBS=ON' make_opts='-j 4'\ | |
--run 'ln -s /usr/lib/x86_64-linux-gnu /usr/lib64' \ | |
--miniconda \ | |
conda_install="python=3.6 pip jupyter cmake mesalib vtk pandas \ | |
matplotlib colormath nipype" \ | |
pip_install="datalad[full] duecredit" \ | |
env_name="simple2" \ | |
activate=true \ | |
--workdir /opt \ | |
--run 'mkdir -p /opt/data && cd /opt/data && \ | |
curl -sSL https://osf.io/download/rh9km/?revision=2 -o templates.zip && \ | |
unzip templates.zip && \ | |
rm -f /opt/data/templates.zip && \ | |
curl -sSL https://osf.io/download/d2cmy/ -o OASIS-TRT-20_jointfusion_DKT31_CMA_labels_in_OASIS-30_v2.nii.gz && \ | |
curl -sSL https://osf.io/download/qz3kx/ -o OASIS-TRT_brains_to_OASIS_Atropos_template.tar.gz && \ | |
tar zxf OASIS-TRT_brains_to_OASIS_Atropos_template.tar.gz && \ | |
rm OASIS-TRT_brains_to_OASIS_Atropos_template.tar.gz && \ | |
curl -sSL https://osf.io/download/dcf94/ -o OASIS-TRT_labels_to_OASIS_Atropos_template.tar.gz && \ | |
tar zxf OASIS-TRT_labels_to_OASIS_Atropos_template.tar.gz && \ | |
rm OASIS-TRT_labels_to_OASIS_Atropos_template.tar.gz' \ | |
--run-bash 'source /opt/miniconda-latest/etc/profile.d/conda.sh && \ | |
conda activate simple2 && \ | |
git clone https://github.com/nipy/mindboggle.git && \ | |
cd /opt/mindboggle && \ | |
git checkout edf95a3 && \ | |
python setup.py install && \ | |
sed -i "s/7.0/8.1/g" vtk_cpp_tools/CMakeLists.txt && \ | |
mkdir /opt/vtk_cpp_tools && \ | |
cd /opt/vtk_cpp_tools && \ | |
cmake /opt/mindboggle/vtk_cpp_tools && \ | |
make' \ | |
--env vtk_cpp_tools=/opt/vtk_cpp_tools > Dockerfile |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from glob import glob | |
import os | |
from nipype import Workflow, MapNode, Node | |
from nipype.interfaces.ants import ApplyTransforms, AntsJointFusion, LabelGeometry | |
from nipype.utils.misc import human_order_sorted | |
T = glob('/data/out/ants_subjects/arno/antsTemplateToSubject*')[::-1] | |
ref = '/data/T1.nii.gz' | |
mask = '/data/out/ants_subjects/arno/antsBrainExtractionMask.nii.gz' | |
T1s = human_order_sorted(glob('/opt/data/OASIS-TRT_brains_to_OASIS_Atropos_template/*.nii.gz')) | |
labels = human_order_sorted(glob('/opt/data/OASIS-TRT_labels_to_OASIS_Atropos_template/*.nii.gz')) | |
thickness = '/data/out/ants_subjects/arno/antsCorticalThickness.nii.gz' | |
N = 20 | |
wf = Workflow('labelflow') | |
transformer = MapNode(ApplyTransforms(), iterfield=['input_image'], name="transformer") | |
transformer.inputs.reference_image = ref | |
transformer.inputs.transforms = T | |
transformer.inputs.input_image = T1s[:N] | |
transformer.inputs.dimension = 3 | |
transformer.inputs.invert_transform_flags = [False, False] | |
transformer_nn = MapNode(ApplyTransforms(), iterfield=['input_image'], name="transformer_nn") | |
transformer_nn.inputs.reference_image = ref | |
transformer_nn.inputs.transforms = T | |
transformer_nn.inputs.dimension = 3 | |
transformer_nn.inputs.invert_transform_flags = [False, False] | |
transformer_nn.inputs.input_image = labels[:N] | |
transformer_nn.inputs.interpolation = 'NearestNeighbor' | |
labeler = Node(AntsJointFusion(), name='labeler') | |
labeler.inputs.dimension = 3 | |
labeler.inputs.target_image = [ref] | |
labeler.inputs.out_label_fusion = 'label.nii.gz' | |
labeler.inputs.mask_image = mask | |
labeler.inputs.num_threads = 8 | |
wf.connect(transformer, 'output_image', labeler, 'atlas_image') | |
wf.connect(transformer_nn, 'output_image', labeler, 'atlas_segmentation_image') | |
tocsv = Node(LabelGeometry(), name='get_measures') | |
tocsv.inputs.intensity_image = thickness | |
wf.connect(labeler, 'out_label_fusion', tocsv, 'label_image') | |
wf.base_dir = os.getcwd() | |
wf.config['monitoring'] = {'enabled': True} | |
wf.run('MultiProc') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment