-
-
Save savan77/ebbb50cffff1a3692171c0782cde1c76 to your computer and use it in GitHub Desktop.
Tensorflow RNN-LSTM implementation to count number of set bits in a binary string
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| #Source code with the blog post at http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/ | |
| import numpy as np | |
| import random | |
| from random import shuffle | |
| import tensorflow as tf | |
| # from tensorflow.models.rnn import rnn_cell | |
| # from tensorflow.models.rnn import rnn | |
| ##Create Dataset## | |
| ################## | |
| NUM_EXAMPLES = 10000 | |
| #inputs | |
| train_input = ['{0:020b}'.format(i) for i in range(2**20)] | |
| shuffle(train_input) | |
| train_input = [map(int,i) for i in train_input] | |
| ti = [] | |
| for i in train_input: | |
| temp_list = [] | |
| for j in i: | |
| temp_list.append([j]) | |
| ti.append(np.array(temp_list)) | |
| train_input = ti | |
| #output | |
| train_output = [] | |
| for i in train_input: | |
| count = 0 | |
| for j in i: | |
| if j[0] == 1: | |
| count+=1 | |
| temp_list = ([0]*21) | |
| temp_list[count]=1 | |
| train_output.append(temp_list) | |
| #train-test split | |
| test_input = train_input[NUM_EXAMPLES:] | |
| test_output = train_output[NUM_EXAMPLES:] | |
| train_input = train_input[:NUM_EXAMPLES] | |
| train_output = train_output[:NUM_EXAMPLES] | |
| print "test and training data loaded" | |
| #Build a graph | |
| #placeholder, will be used later to feed data | |
| data = tf.placeholder(tf.float32, [None, 20,1]) #Number of examples, number of input, dimension of each input | |
| target = tf.placeholder(tf.float32, [None, 21]) | |
| #variables to train | |
| weight = tf.Variable(tf.truncated_normal([num_hidden, int(target.get_shape()[1])])) | |
| bias = tf.Variable(tf.constant(0.1, shape=[target.get_shape()[1]])) | |
| num_hidden = 24 | |
| cell = tf.nn.rnn_cell.LSTMCell(num_hidden,state_is_tuple=True) | |
| val, _ = tf.nn.dynamic_rnn(cell, data, dtype=tf.float32) | |
| val = tf.transpose(val, [1, 0, 2]) | |
| last = tf.gather(val, int(val.get_shape()[0]) - 1) | |
| prediction = tf.nn.softmax(tf.matmul(last, weight) + bias) | |
| #loss | |
| cross_entropy = -tf.reduce_sum(target * tf.log(tf.clip_by_value(prediction,1e-10,1.0))) | |
| optimizer = tf.train.AdamOptimizer() | |
| minimize = optimizer.minimize(cross_entropy) | |
| mistakes = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1)) | |
| error = tf.reduce_mean(tf.cast(mistakes, tf.float32)) | |
| #session | |
| init_op = tf.global_variables_initializer() | |
| sess = tf.Session() | |
| sess.run(init_op) | |
| #train model | |
| batch_size = 1000 | |
| no_of_batches = int(len(train_input)) / batch_size | |
| epoch = 5000 | |
| for i in range(epoch): | |
| ptr = 0 | |
| for j in range(no_of_batches): | |
| inp, out = train_input[ptr:ptr+batch_size], train_output[ptr:ptr+batch_size] | |
| ptr+=batch_size | |
| sess.run(minimize,{data: inp, target: out}) | |
| print "Epoch ",str(i) | |
| incorrect = sess.run(error,{data: test_input, target: test_output}) | |
| print sess.run(prediction,{data: [[[1],[0],[0],[1],[1],[0],[1],[1],[1],[0],[1],[0],[0],[1],[1],[0],[1],[1],[1],[0]]]}) | |
| print('Epoch {:2d} error {:3.1f}%'.format(i + 1, 100 * incorrect)) | |
| sess.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment