Created
March 30, 2016 14:24
-
-
Save savonarola/d3a5d24763c7d3361cb3f6ca64c3315d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 51, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"\n", | |
"from math import exp, pow, sqrt\n", | |
"from sklearn.metrics import roc_auc_score" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"data = pd.read_csv(\"data-logistic.csv\", header=None)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"y = data[0].values\n", | |
"xs = data[[1,2]].values" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"l = xs.size" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def logistic_step(w, k, C):\n", | |
" w1, w2 = w\n", | |
" \n", | |
" sum_w1 = 0\n", | |
" sum_w2 = 0\n", | |
" for i in range(0, y.size):\n", | |
" yi = y[i]\n", | |
" xi1 = xs[i][0]\n", | |
" xi2 = xs[i][1]\n", | |
" coef = yi * ( 1 - 1 / ( 1 + exp( - yi*( w1*xi1 + w2*xi2 ))))\n", | |
" sum_w1 += xi1 * coef\n", | |
" sum_w2 += xi2 * coef\n", | |
" \n", | |
" w1_new = w1 + k*(1/l)*sum_w1 - k * C * w1\n", | |
" w2_new = w2 + k*(1/l)*sum_w2 - k * C * w2\n", | |
" \n", | |
" return (w1_new, w2_new)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def ediff(v, w):\n", | |
" v1, v2 = v\n", | |
" w1, w2 = w\n", | |
" return sqrt(pow(v1 - w1, 2) + pow(v2 - w2, 2))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"threshold = 1e-5" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 41, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def iterate(w0, k, C):\n", | |
" i = 0\n", | |
" w_old = w0\n", | |
" while True:\n", | |
" i += 1\n", | |
" w_new = logistic_step(w_old, k, C)\n", | |
" # print(\"i=%s, w: %s -> %s\" % (i, w_old, w_new)) \n", | |
" if ediff(w_old, w_new) < threshold:\n", | |
" break\n", | |
" w_old = w_new\n", | |
" return w_old" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 45, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def y_calc(w, x):\n", | |
" w1, w2 = w\n", | |
" if w1 * x[0] + w2 * x[1] > 0:\n", | |
" return 1\n", | |
" else:\n", | |
" return -1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 52, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def score(w, x):\n", | |
" w1, w2 = w\n", | |
" return 1 / (1 + exp(-w1 * x[0] - w2 * x[1]))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"w_reg = iterate((0,0), 0.1, 10)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 46, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"y_calc_reg = np.array([ y_calc(w_reg, x) for x in xs])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 53, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"y_score_reg = np.array([ score(w_reg, x) for x in xs])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 48, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"w_no_reg = iterate((0,0), 0.1, 0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 49, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"y_calc_no_reg = np.array([ y_calc(w_no_reg, x) for x in xs])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 54, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"y_score_no_reg = np.array([ score(w_no_reg, x) for x in xs])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 56, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.93666666666666654" | |
] | |
}, | |
"execution_count": 56, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"roc_auc_score(y, y_score_reg)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 57, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.92685714285714282" | |
] | |
}, | |
"execution_count": 57, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"roc_auc_score(y, y_score_no_reg)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment