Created
August 16, 2023 14:11
-
-
Save sayakpaul/0211e1f2742159cc2176b326dff435f1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Examples: | |
(1) python benchmark_controlnet_sdxl.py --controlnet_id diffusers/controlnet-depth-sdxl-1.0 | |
(2) python benchmark_controlnet_sdxl.py --controlnet_id diffusers/controlnet-depth-sdxl-1.0-small | |
(3) python benchmark_controlnet_sdxl.py --controlnet_id diffusers/controlnet-depth-sdxl-1.0-mid | |
""" | |
import argparse | |
import time | |
import torch | |
from diffusers import (AutoencoderKL, ControlNetModel, | |
StableDiffusionXLControlNetPipeline) | |
from diffusers.utils import load_image | |
PIPELINE_ID = "stabilityai/stable-diffusion-xl-base-1.0" | |
VAE_PATH = "madebyollin/sdxl-vae-fp16-fix" | |
NUM_ITERS_TO_RUN = 3 | |
NUM_INFERENCE_STEPS = 25 | |
NUM_IMAGES_PER_PROMPT = 4 | |
DEPTH_IMAGE_URL = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/d_stormtrooper.png" | |
PROMPT = "stormtrooper lecture, photorealistic" | |
SEED = 0 | |
def load_pipeline(controlnet_id): | |
controlnet = ControlNetModel.from_pretrained( | |
controlnet_id, | |
variant="fp16", | |
use_safetensors=True, | |
torch_dtype=torch.float16, | |
use_auth_token=True, | |
).to("cuda") | |
vae = AutoencoderKL.from_pretrained(VAE_PATH, torch_dtype=torch.float16).to("cuda") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
PIPELINE_ID, | |
controlnet=controlnet, | |
vae=vae, | |
variant="fp16", | |
use_safetensors=True, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
pipe.enable_model_cpu_offload() | |
return pipe | |
def run_inference(args): | |
torch.cuda.reset_peak_memory_stats() | |
pipe = load_pipeline(args.controlnet_id) | |
depth_image = load_image(DEPTH_IMAGE_URL) | |
start = time.time_ns() | |
for _ in range(NUM_ITERS_TO_RUN): | |
images = pipe( | |
PROMPT, | |
image=depth_image, | |
num_inference_steps=NUM_INFERENCE_STEPS, | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, | |
).images | |
end = time.time_ns() | |
mem_bytes = torch.cuda.max_memory_allocated() | |
mem_MB = int(mem_bytes / (10**6)) | |
total_time = f"{(end - start) / 1e6:.1f}" | |
results = { | |
"controlnet_id": args.controlnet_id, | |
"total_time (ms)": total_time, | |
"memory (mb)": mem_MB, | |
} | |
return results | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--controlnet_id", | |
type=str, | |
default="diffusers/controlnet-depth-sdxl-1.0", | |
required=True, | |
) | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = parse_args() | |
results = run_inference(args) | |
print(results) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment