Created
August 4, 2023 08:59
-
-
Save sayakpaul/a57a86ee7419ac3e7a7879fd100e8d06 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Examples: | |
(1) python benchmark_distilled_sd.py --pipeline_id CompVis/stable-diffusion-v1-4 | |
(2) python benchmark_distilled_sd.py --pipeline_id CompVis/stable-diffusion-v1-4 --vae_path sayakpaul/taesd-diffusers | |
(3) python benchmark_distilled_sd.py --pipeline_id nota-ai/bk-sdm-small | |
(4) python benchmark_distilled_sd.py --pipeline_id nota-ai/bk-sdm-small --vae_path sayakpaul/taesd-diffusers | |
""" | |
import argparse | |
import time | |
import torch | |
from diffusers import AutoencoderTiny, DiffusionPipeline | |
NUM_ITERS_TO_RUN = 3 | |
NUM_INFERENCE_STEPS = 25 | |
NUM_IMAGES_PER_PROMPT = 4 | |
PROMPT = "a golden vase with different flowers" | |
SEED = 0 | |
def load_pipeline(pipeline_id, vae_path=None): | |
pipe = DiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
if vae_path is not None: | |
pipe.vae = AutoencoderTiny.from_pretrained( | |
vae_path, torch_dtype=torch.float16 | |
).to("cuda") | |
return pipe | |
def run_inference(args): | |
torch.cuda.reset_peak_memory_stats() | |
pipe = load_pipeline(args.pipeline_id, args.vae_path) | |
start = time.time_ns() | |
for _ in range(NUM_ITERS_TO_RUN): | |
images = pipe( | |
PROMPT, | |
num_inference_steps=NUM_INFERENCE_STEPS, | |
generator=torch.manual_seed(SEED), | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, | |
).images | |
end = time.time_ns() | |
mem_bytes = torch.cuda.max_memory_allocated() | |
mem_MB = int(mem_bytes / (10**6)) | |
total_time = f"{(end - start) / 1e6:.1f}" | |
results = { | |
"pipeline_id": args.pipeline_id, | |
"total_time (ms)": total_time, | |
"memory (mb)": mem_MB, | |
} | |
if args.vae_path is not None: | |
results.update({"vae_path": args.vae_path}) | |
return results | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--pipeline_id", | |
type=str, | |
default="CompVis/stable-diffusion-v1-4", | |
required=True, | |
) | |
parser.add_argument("--vae_path", type=str, default=None) | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = parse_args() | |
results = run_inference(args) | |
print(results) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Benchmark conducted on Tesla P8 (24GB VRAM).
Environment:
diffusers
installed from this commit: 801a5e2199bf0043c02b2df060aa2d28c6c61d86