Last active
December 5, 2022 22:35
-
-
Save sayakpaul/d82a43c03089a8abfb5b042ee89eeb32 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Sourced from https://github.com/anirbankonar123/CorrosionDetector/blob/master/generate_tfrecord.py | |
""" | |
Usage: | |
# From tensorflow/models/ | |
# Create train data: | |
python3 generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=data/train.record | |
# Create test data: | |
python3 generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=data/test.record | |
""" | |
from __future__ import division | |
from __future__ import print_function | |
from __future__ import absolute_import | |
import os | |
import io | |
import pandas as pd | |
import tensorflow as tf | |
from PIL import Image | |
from object_detection.utils import dataset_util | |
from collections import namedtuple, OrderedDict | |
flags = tf.app.flags | |
flags.DEFINE_string('csv_input', '', 'Path to the CSV input') | |
flags.DEFINE_string('output_path', '', 'Path to output TFRecord') | |
FLAGS = flags.FLAGS | |
def split(df, group): | |
data = namedtuple('data', ['filename', 'object']) | |
gb = df.groupby(group) | |
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] | |
def create_tf_example(group): | |
with tf.gfile.GFile(group.filename, 'rb') as fid: | |
encoded_jpg = fid.read() | |
encoded_jpg_io = io.BytesIO(encoded_jpg) | |
image = Image.open(encoded_jpg_io) | |
width, height = image.size | |
filename = group.filename.encode('utf8') | |
image_format = b'jpg' | |
xmins = [] | |
xmaxs = [] | |
ymins = [] | |
ymaxs = [] | |
classes_text = [] | |
classes = [] | |
for index, row in group.object.iterrows(): | |
xmins.append(row['xmin'] / width) | |
xmaxs.append(row['xmax'] / width) | |
ymins.append(row['ymin'] / height) | |
ymaxs.append(row['ymax'] / height) | |
classes_text.append(str(row['class']).encode('utf8')) | |
classes.append(row['class']) | |
tf_example = tf.train.Example(features=tf.train.Features(feature={ | |
'image/height': dataset_util.int64_feature(height), | |
'image/width': dataset_util.int64_feature(width), | |
'image/filename': dataset_util.bytes_feature(filename), | |
'image/source_id': dataset_util.bytes_feature(filename), | |
'image/encoded': dataset_util.bytes_feature(encoded_jpg), | |
'image/format': dataset_util.bytes_feature(image_format), | |
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), | |
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), | |
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), | |
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), | |
'image/object/class/text': dataset_util.bytes_list_feature(classes_text), | |
'image/object/class/label': dataset_util.int64_list_feature(classes), | |
})) | |
return tf_example | |
def main(_): | |
writer = tf.python_io.TFRecordWriter(FLAGS.output_path) | |
examples = pd.read_csv(FLAGS.csv_input) | |
grouped = split(examples, 'filename') | |
for group in grouped: | |
tf_example = create_tf_example(group) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
output_path = os.path.join(os.getcwd(), FLAGS.output_path) | |
print('Successfully created the TFRecords: {}'.format(output_path)) | |
if __name__ == '__main__': | |
tf.app.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment