Last active
January 13, 2025 01:51
-
-
Save sayakpaul/e1f28e86d0756d587c0b898c73822c47 to your computer and use it in GitHub Desktop.
Shows how to run Flux schnell under 17GBs without bells and whistles. It additionally shows how to serialize the quantized checkpoint and load it back.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from huggingface_hub import hf_hub_download | |
from diffusers import FluxTransformer2DModel, DiffusionPipeline | |
dtype, device = torch.bfloat16, "cuda" | |
ckpt_id = "black-forest-labs/FLUX.1-schnell" | |
with torch.device("meta"): | |
config = FluxTransformer2DModel.load_config(ckpt_id, subfolder="transformer") | |
model = FluxTransformer2DModel.from_config(config).to(dtype) | |
ckpt_path = hf_hub_download(repo_id="sayakpaul/flux.1-schell-int8wo", filename="flux_schnell_int8wo.pt") | |
state_dict = torch.load(ckpt_path, map_location="cpu") | |
model.load_state_dict(state_dict, assign=True) | |
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, transformer=model, torch_dtype=dtype).to("cuda") | |
image = pipeline( | |
"cat", guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256 | |
).images[0] | |
image.save("flux_schnell_int8.png") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Install `torchao` from source: https://github.com/pytorch/ao | |
# Install PyTorch nightly | |
from diffusers import DiffusionPipeline, FluxTransformer2DModel, AutoencoderKL | |
from transformers import T5EncoderModel, CLIPTextModel | |
from torchao.quantization import quantize_, int8_weight_only | |
import torch | |
ckpt_id = "black-forest-labs/FLUX.1-schnell" | |
# Quantize the components individually. | |
# If quality is taking a hit then don't quantize all components. | |
# Mix and match. | |
############ Diffusion Transformer ############ | |
transformer = FluxTransformer2DModel.from_pretrained( | |
ckpt_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
quantize_(transformer, int8_weight_only()) | |
############ Text Encoder ############ | |
text_encoder = CLIPTextModel.from_pretrained( | |
ckpt_id, subfolder="text_encoder", torch_dtype=torch.bfloat16 | |
) | |
quantize_(text_encoder, int8_weight_only()) | |
############ Text Encoder 2 ############ | |
text_encoder_2 = T5EncoderModel.from_pretrained( | |
ckpt_id, subfolder="text_encoder_2", torch_dtype=torch.bfloat16 | |
) | |
quantize_(text_encoder_2, int8_weight_only()) | |
############ VAE ############ | |
vae = AutoencoderKL.from_pretrained( | |
ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16 | |
) | |
quantize_(vae, int8_weight_only()) | |
# Initialize the pipeline now. | |
pipeline = DiffusionPipeline.from_pretrained( | |
ckpt_id, | |
transformer=transformer, | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
image = pipeline( | |
"cat", guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256 | |
).images[0] | |
torch.cuda.empty_cache() | |
memory = (torch.cuda.memory_allocated() / 1024 / 1024 / 1024) | |
print(f"{memory=:.3f} GB") | |
image.save("quantized_image.png") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from diffusers import FluxTransformer2DModel | |
from torchao.quantization import quantize_, int8_weight_only | |
import torch | |
ckpt_id = "black-forest-labs/FLUX.1-schnell" | |
transformer = FluxTransformer2DModel.from_pretrained( | |
ckpt_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
quantize_(transformer, int8_weight_only()) | |
# should ideally be possible with safetensors but | |
# https://github.com/huggingface/safetensors/issues/515 | |
# this checkpoint is 12GB instead of 23GB. | |
torch.save(transformer.state_dict(), "flux_schnell_int8wo.pt") |
Edit 12-01-2025:
as of now, even this is throwing an error:
AttributeError: Can't get attribute 'PlainAQTLayout' on <module 'torchao.dtypes.affine_quantized_tensor' from '...Python\\Python311\\site-packages\\torchao\\dtypes\\affine_quantized_tensor.py'>
For those trying to use the one under 17GBs the link is dead, you can you use this instead:
import torch
from diffusers import FluxTransformer2DModel, DiffusionPipeline
dtype, device = torch.bfloat16, "cuda"
ckpt_id = "black-forest-labs/FLUX.1-schnell"
model = FluxTransformer2DModel.from_pretrained(
"sayakpaul/flux.1-schell-int8wo-improved", torch_dtype=dtype, use_safetensors=False
)
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, transformer=model, torch_dtype=dtype).to("cuda")
image = pipeline(
"cat", guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256
).images[0]
image.save("flux_schnell_int8.png")
@MostHumble
Getting an error running that code:
AttributeError: Can't get attribute 'PlainAQTLayout' on <module 'torchao.dtypes.affine_quantized_tensor' from '...Python\\Python311\\site-packages\\torchao\\dtypes\\affine_quantized_tensor.py'>
On torchao == 0.7.0
@tin2tin
Ended up having the same issue, reported it here: https://huggingface.co/sayakpaul/flux.1-schell-int8wo-improved/discussions/2#6783e9e49c52f42c530ff7c1
Please take the issue with torchao
. Until it's resolved, either:
- Use
torchao
integration from Diffusers. - Downgrade
torchao
installation.
Other than that, I can't provide additional suggestions.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This works on windows, in case anyone wants to know
The commands on cmd prompt are actually: