Skip to content

Instantly share code, notes, and snippets.

@sayakpaul
Last active January 13, 2025 01:51
Show Gist options
  • Save sayakpaul/e1f28e86d0756d587c0b898c73822c47 to your computer and use it in GitHub Desktop.
Save sayakpaul/e1f28e86d0756d587c0b898c73822c47 to your computer and use it in GitHub Desktop.
Shows how to run Flux schnell under 17GBs without bells and whistles. It additionally shows how to serialize the quantized checkpoint and load it back.
import torch
from huggingface_hub import hf_hub_download
from diffusers import FluxTransformer2DModel, DiffusionPipeline
dtype, device = torch.bfloat16, "cuda"
ckpt_id = "black-forest-labs/FLUX.1-schnell"
with torch.device("meta"):
config = FluxTransformer2DModel.load_config(ckpt_id, subfolder="transformer")
model = FluxTransformer2DModel.from_config(config).to(dtype)
ckpt_path = hf_hub_download(repo_id="sayakpaul/flux.1-schell-int8wo", filename="flux_schnell_int8wo.pt")
state_dict = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(state_dict, assign=True)
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, transformer=model, torch_dtype=dtype).to("cuda")
image = pipeline(
"cat", guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256
).images[0]
image.save("flux_schnell_int8.png")
# Install `torchao` from source: https://github.com/pytorch/ao
# Install PyTorch nightly
from diffusers import DiffusionPipeline, FluxTransformer2DModel, AutoencoderKL
from transformers import T5EncoderModel, CLIPTextModel
from torchao.quantization import quantize_, int8_weight_only
import torch
ckpt_id = "black-forest-labs/FLUX.1-schnell"
# Quantize the components individually.
# If quality is taking a hit then don't quantize all components.
# Mix and match.
############ Diffusion Transformer ############
transformer = FluxTransformer2DModel.from_pretrained(
ckpt_id, subfolder="transformer", torch_dtype=torch.bfloat16
)
quantize_(transformer, int8_weight_only())
############ Text Encoder ############
text_encoder = CLIPTextModel.from_pretrained(
ckpt_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
)
quantize_(text_encoder, int8_weight_only())
############ Text Encoder 2 ############
text_encoder_2 = T5EncoderModel.from_pretrained(
ckpt_id, subfolder="text_encoder_2", torch_dtype=torch.bfloat16
)
quantize_(text_encoder_2, int8_weight_only())
############ VAE ############
vae = AutoencoderKL.from_pretrained(
ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16
)
quantize_(vae, int8_weight_only())
# Initialize the pipeline now.
pipeline = DiffusionPipeline.from_pretrained(
ckpt_id,
transformer=transformer,
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
torch_dtype=torch.bfloat16
).to("cuda")
image = pipeline(
"cat", guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256
).images[0]
torch.cuda.empty_cache()
memory = (torch.cuda.memory_allocated() / 1024 / 1024 / 1024)
print(f"{memory=:.3f} GB")
image.save("quantized_image.png")
from diffusers import FluxTransformer2DModel
from torchao.quantization import quantize_, int8_weight_only
import torch
ckpt_id = "black-forest-labs/FLUX.1-schnell"
transformer = FluxTransformer2DModel.from_pretrained(
ckpt_id, subfolder="transformer", torch_dtype=torch.bfloat16
)
quantize_(transformer, int8_weight_only())
# should ideally be possible with safetensors but
# https://github.com/huggingface/safetensors/issues/515
# this checkpoint is 12GB instead of 23GB.
torch.save(transformer.state_dict(), "flux_schnell_int8wo.pt")
@brurpo
Copy link

brurpo commented Oct 8, 2024

@tin2tin we don't support Windows really well simply because torch.compile() doesnt support Windows very well. Feel free to open an issue on our repo though we might choose to prioritze this depending on demand.

For now try installing ao from source using USE_CPP=0 pip install .

This works on windows, in case anyone wants to know
The commands on cmd prompt are actually:

set USE_CPP=0
pip install <path to downloaded torchao folder>

@MostHumble
Copy link

MostHumble commented Jan 12, 2025

Edit 12-01-2025:
as of now, even this is throwing an error:

AttributeError: Can't get attribute 'PlainAQTLayout' on <module 'torchao.dtypes.affine_quantized_tensor' from '...Python\\Python311\\site-packages\\torchao\\dtypes\\affine_quantized_tensor.py'>

For those trying to use the one under 17GBs the link is dead, you can you use this instead:

import torch
from diffusers import FluxTransformer2DModel, DiffusionPipeline

dtype, device = torch.bfloat16, "cuda"
ckpt_id = "black-forest-labs/FLUX.1-schnell"

model = FluxTransformer2DModel.from_pretrained(
    "sayakpaul/flux.1-schell-int8wo-improved", torch_dtype=dtype, use_safetensors=False
)
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, transformer=model, torch_dtype=dtype).to("cuda")
image = pipeline(
    "cat", guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256
).images[0]
image.save("flux_schnell_int8.png")

@tin2tin
Copy link

tin2tin commented Jan 12, 2025

@MostHumble
Getting an error running that code:
AttributeError: Can't get attribute 'PlainAQTLayout' on <module 'torchao.dtypes.affine_quantized_tensor' from '...Python\\Python311\\site-packages\\torchao\\dtypes\\affine_quantized_tensor.py'>
On torchao == 0.7.0

@MostHumble
Copy link

@sayakpaul
Copy link
Author

Please take the issue with torchao. Until it's resolved, either:

  1. Use torchao integration from Diffusers.
  2. Downgrade torchao installation.

Other than that, I can't provide additional suggestions.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment